Preface Despite the progress made over the years, about 60 percent of sub-Saharan Africa's population — or more than half a billion people - remain without access to electricity. In rural areas, the situation is worse, with only one in four Africans having access to electricity. In addition, per capita consumption of energy in sub-Saharan Africa (excluding South Africa) is still extremely low at 180 kWh, compared to 13,000 kWh per capita in the United States, 6,500 kWh in Europe and 2,000 kWh in other developing countries. As part of its efforts to address this situation, the Bank in 2016 launched the New Deal on Energy for Africa that has the aspirational goal of achieving universal access to electricity by 2025 – 100 percent access in urban areas, 95 percent in rural areas, by promoting on- and off-grid solutions, as well as related technical advances. The New Deal on Energy for Africa is a partnership-driven effort that facilitates the Bank's collaboration with governments, the private sector, bilateral and multilateral energy sector initiatives to develop a Transformative Partnership on Energy for Africa. A key aspect of the Bank's work on infrastructure development is its Africa Infrastructure Knowledge Program (AIKP) that aims to improve the availability of statistical information on infrastructure development across Africa. The AIKP program is intended to provide an effective and sustainable platform for data collection and analysis on Africa's infrastructure sectors, namely: (i) electricity; (ii) transport; (iii) ICT; and (iv) water and sanitation. One unique feature of the AIKP is the estimation of investment needs in all the infrastructure sectors using mathematical programming models. These models seek to catalyze a more active and informed engagement of stakeholders in the development of infrastructure investment strategies in Africa. The current study titled: "Estimating Investment Needs for the Power Sector in Africa 2016-2025", focuses only on the energy sector. It has three main objectives: (i) to generate individual country energy investment needs using mathematical programming models, (ii) to provide information about the state of the energy sector in Africa as a whole and in its five regions individually, and (iii) to provide information that helps African countries and regional institutions in determining the optimal set of investments needed to meet the demand in their respective countries and regions by 2020, 2025 and 2030. This report was prepared by the Statistics Department in close collaboration with the Energy Policy, Regulations and Statistics Department. It includes optimization accounts for country-specific daily demand profiles and solar and wind resource profiles. The report is based on information provided by the 48 African countries that have been participating in the AIKP data collection and analysis exercises undertaken by the bank over the years as part of its statistical capacity building program (SCB) for Africa. The success of this task is therefore entirely due to the commitment of the AIKP country teams based in the National Statistics Offices, national infrastructure ministries and other national and sub-regional institutions in Africa. On behalf of the AfDB Statistics Team, I would therefore like to express our profound gratitude to all those involved for their enduring commitment to the successful implementation of the AIKP work program in general, and for their active participation in the data collection and analysis in particular, which has helped to make this exercise a great success. My appreciation also goes to the AIKP Team in the Statistics Department, comprising Louis Koua Koua-kou, Maurice Mubila, Yassine Jmal, and Desire Lakpa who oversaw the implementation of this AIKP task and ensured its successful conclusion. The Statistics Team is also grateful for the productive collaboration with colleagues in the Energy Financial Solutions, Policy and Regulation Department, Nirina Letsara and Callixte Kambanda, who provided critical inputs for this task under the guidance of Wale Shonibare, the Director of their Department and currently serving as Acting Vice President for Power, Energy, Climate and Green Growth. ### **Charles Leyeka Lufumpa** Director, Statistics Department African Development Bank Group helped to make this exercise a great success. ### Objectives and approach of the study Annex IV presents a complete description of the methodology and sources utilized in this study. This section offers a narrative summary to the reader in order to better understand how the various estimates have been arrived at and how they should be interpreted. Specifically: - Investment needs to meet growing demand and access targets. All work regarding data collection, assumptions, modelling activities and optimization are designed so as to estimate optimal investment needs in the sector, within a reasonable set of restrictions. - Optimization using the Balmorel model. The Balmorel model is the primary tool utilized in the analysis. It applies a wide range of technology and geographic specific data and assumptions pertaining to costs, production, resources (water, solar and wind), fuels, distances, etc. to determine the optimal set of investments in order to meet demand in each country and region by 2020, 2025 and 2030. Importantly, the optimization accounts for country-specific daily demand profiles and solar and wind resource profiles. - Restrictions to the optimization to reflect reality. Because the optimization model is designed to minimize total system costs, it does not inherently reflect certain technical or practical restrictions that may exist. For example, most countries prefer to develop a diversified generation mix, and are not willing to rely entirely on power imports to meet demand. Thus, a key aspect of the analysis has been that of introducing reasonable restrictions to the model, while maintaining significant opportunity for it to determine optimal investment paths. - Interpreting the results of optimization. The results of the modeling are a combination of optimization and a set of restrictions, and must be interpreted as such. The results do not predict what will happen in the future, but rather what the team has deemed as an optimal yet plausible sector development path. By optimal is meant the set of investments that minimize total system costs (including capital, fuel and O&M) for the region as a whole. - Access expansion. An access expansion model has been developed in order to ensure that country specific access expansion paths reflect; i) consistency with the overall targets of the AfDB for the continent, ii) the fact that each country has a different starting point in terms of rapidly expanding access, and iii) the various access options on-grid (rural and urban), mini-grid and off-grid. - Demand growth and investments access expansion. Demand grows as a result of; i) economic growth and electricity consumptions elasticity, and ii) access expansion. Projections for both sources of growth are made for each country. In addition to generating additional demand, access expansion generates investment needs directly. Thus, in order to complete investment needs projections for the sector, updated per-connection assumptions are made for on-, mini- and off-grid. ### Estimation and uncertainty. Making projections 14 years into the future in a market influenced by technology change, political turmoil, cross-border relations, economic growth and human behavior is fraught with uncertainty. Several of the methods utilized in this analysis rely on prior statistical analyses. The team has very diligently and carefully selected the sources for all data and projections for each input. However, whether based on statistical analysis or market research, all projections have uncertainties tied to them. Nonetheless, in utilizing our modeling tools, the analyses necessarily arrive at specific investment needs estimates – rather than intervals, as this is not a statistical analysis. This does not imply that we believe that our estimates will turn out to be exactly correct or accurate. Instead, these are our best estimates and there is no reasonable manner in which to assign probabilities or intervals. The scenarios and sensitivity analyses presented in Chapter 3 illuminate this uncertainty – but also the power that policy – can have on the future of Africa. ### **Executive Summary** How much investment is needed to realize the African Development Bank's (AfDB) New Deal on Energy for Africa (the New Deal)? This is the overriding question that is thoroughly analyzed from the bottom-up for 54 countries in Africa, covering generation, inter-connectors, transmission and distribution (T&D), mini-grids and off-grid access options. Underlying the analysis is an unprecedented collection of data, high-resolution regional power investment optimization and a tailor-made access expansion model for the continent. The answer to this question is an average annual investment of 29-39 billion USD until 2025, depending on the continent's ambition as to avoided greenhouse gas (GHG) emissions. In total, 230-310 billion USD is required until 2025, while an additional 190-215 billion USD is required for the period 2026-2030. The total average annual investment from 2018 to 2030 is estimated at 32-40 billion USD, as depicted in the figure below. Figure 0.1 Depiction of required investment ramp-up to achieve universal access targets of the New Deal and beyond into 2030 (the figure draws on the analysis results but is for illustrative purposes only). ### Achieving the New Deal's Universal Access Vision AfDB's New Deal on Energy for Africa 2016-2025. The starting point for this analysis is the AfDB's "aspirational vision to achieve universal access to electricity by 2025 – 100% access in urban areas and 95% access in rural areas." The Strategy goes further in terms of establishing
"strategic building blocks to achieve universal access", which by 2025 include 130 million new grid connections and 75 million end-users benefiting from off-grid solutions. If the New Deal's aspirational vision is realized, it is estimated that about one billion Africans will gain access modern energy services by 2025. Such a rate of access expansion would be unprecedented for Africa and would require a major policy and financing push, as well as favorable macro-economic conditions. However, the analyses presented in this report confirms that an emerging "continuum" of access levels and decentralized power systems coupled with rapidly evolving business models, plummeting renewables costs and blossoming energy efficiency options likely means that the AfDB's vision of universal access can be realized at a lower cost than previously expected. It is important to recognize that every country has a unique starting point, and efforts and investments will have to be tailored to these conditions. Accordingly, for the sake of this analysis, a tailor-made model has been deve- loped to project access expansion paths across countries and access types in line with AfDB's New Deal targets. Specifically, each of the 54 countries have different starting points and they will all follow unique paths (and pace) to universal access. Nonetheless, the AfDB targets are so ambitious that most countries must see rapid access expansion and some form of "convergence" if these targets are to be met. The model developed for this study takes account of, among others, the current access rates, population density, poverty, and investment climates for each country to determine the pace and relative importance of grid, mini-grid and off-grid. Ultimately, the analysis does not take a view on the realism of these targets but quantifies the requirements. ### Regional optimization of investments and system operations When it comes to optimization, network integration and (implied) system operations at the regional level, each region has a unique starting point and optimal development path. For this study, a tailored Balmorel Model is deployed in order to optimize technology choices and supply options for each country and region. Among other features, the model accounts for the cost and physical characteristics of wide range of generation technologies, inter-connection options and costs, country-specific daily demand profile estimates and actual daily variable renewable resource profiles and inter-action between supply options in meeting peak demand. While several modelling restraints have been introduced so as to reflect real-world constraints, such complex optimizations often yield unexpected results. Africa currently has an unprecedented 80 GW of new capacity under construction. This limits the need for additional investments until 2025, and even introduces likely surpluses in Eastern and Southern Africa. About 49 percent (39 GW) of this new capacity is added in Northern Africa, which also is set to retire 19 GW during the period. Central Africa, on the other hand, has a mere one GW under construction compared to East Africa's 12 GW. At the continent level, these numbers should offer hope, as they indicate that there already is a certain level of momentum in terms of achieving the New Deal's targets. In East Africa, a forecasted near-term power supply surplus eventually evolves into a more than quadrupling of installed capacity by 2030, with the inter-play between large reservoirs and solar power a key feature particularly towards 2030. The region is forecasted to undergo significant system integration over the period with some unexpected evolutions in exports and imports, as countries look to meet growing demand and utilize comparative resource advantages. As can be seen from the figure to the right, the East-African region is expected to develop a diverse generation mix, with solar and batteries making up the lion's share of investment by 2030 in several countries. In Southern Africa, the expectations of continued sluggish growth and decreasing energy intensity in South Africa dampens forecasted demand growth and new investment requirements, especially until 2025. With no dedicated emission reduction efforts or policies in the Reference Scenario, coal power in South Africa continues to dominate the generation mix, although large reservoir hydropower and, towards the end of the period, solar power make important contributions. The power system is already highly integrated and the region, particularly some smaller countries, are set to reap significant benefits from this integration. Only limited additional investments in new inter-connectors are deemed optimal. In Western Africa, growing energy demand is met through significant investments in natural gas power plants, solar and reservoir hydropower, resulting in more than a tripling of installed capacity by 2030. Investments in generation are complemented by a number of new inter-connectors, allowing the region to fully utilize its potential and develop a diverse generation mix. The projected energy mix is dominated by solar, hydro power with reservoirs and natural gas, with the latter playing a particularly important role. In Central Africa, few generation projects are currently under construction, and significant new investments are required already by 2025 in order to meet the forecasted demand increase. Furthermore, because few of the power markets in the region are meaningfully connected at present, investments in new inter-connectors are crucial for the development of an integrated and well-functioning power system. By 2030, installed capacity in the region is expected to quadruple, primarily as a result of investments in large run-of-river hydropower projects in the Democratic Republic of Congo and Cameroon as well as solar power complemented by utility-scale batteries and reservoir hydro. In Northern Africa, most countries are already at or near full access. Electricity demand growth is therefore primarily driven by the forecasted economic growth in the region and particularly in Egypt. By 2030, installed capacity is forecast to be near double, with substantial investments made in solar and natural gas power plants. Some renewable energy projects and a significant number of natural gas power plants are already under construction, considerably reducing the required additional investment in generation by 2025. Furthermore, it is found optimal to invest in new inter-connectors for all countries except Egypt, although the amount of tradable power within the region is modest compared to its total electricity demand. ### Continent-wide investment needs to achieve New Deal It is estimated that a minimum of 32 billion USD per year must be invested on average up until 2030 to realize the New Deal. This estimate is based on regional system-wide optimizations. Deviations from a pure region-wide cost-minimization strategy will lead to higher costs and likely higher investment needs. The scenario analyses in this study explore the implications of deviations from pure system cost minimization. The introduction of dedicated emission reduction ambitions and/or carbon pricing (a Low Carbon Scenario) has dramatic impacts on the optimal generation mix, investment requirements and system cost levels. In order to simulate the implications of global efforts to reduce emissions in the African power sector, a carbon price was introduced to the optimization in a separate Low Carbon Scenario. In terms of system cost, the carbon price has the most prominent effect on the power system in Southern Africa, reducing the reliance on coal power plants in favor of wind, solar and hydro. This effect is also considerable for Eastern and Western Africa, since these regions rely on natural gas and partially coal in the Reference Scenario. Greenhouse gas emissions in the Low Carbon Scenario are forecasted to be nearly 35 percent lower than the Reference Scenario in 2025 and about 40 percent lower in 2030. 2030 emission reductions as compared to the Reference Scenario amount to 235 million ton of CO2-equivalent per year, equal to half the 2016 emissions of South Africa . Such a green shift, in accordance with the Nationally Determined Contributions set forth by all African countries during the 2015 COP 21 in Paris, would imply an increase of total system costs in 2030 by approximately five percent and an increase of annual investment needs over the forecasted period by 30 percent. Specifically, the Low Carbon Scenario would imply an increase in total system costs for Africa of 5.8 billion USD per year from 2030. As this amount would represent the cost to the African power system of a low carbon development path, it could be treated as a reference amount when considering climate financing from developing countries, as envisioned under the Paris Agreement. A separate Trade Stagnation Scenario where inter-connector investments are severely limited reveals that while regional integration has surprisingly limited aggregate impacts on the continental level, it is nonetheless critical for several smaller countries that stand to benefit significantly from lower cost imports. The limited aggregate impact is primarily driven by the dominant role of the larger power systems and the fact that a number of major inter-connectors already are under construction. However, Burundi, Eritrea, Swaziland, Lesotho, Benin, Togo, Chad, Gabon and Mauritania among other will reap significant benefits from increased integration. The relative benefits of trade also differ between regions due to the countries' different levels of dependency on cross-border power trade. While it is found optimal to trade significant amount of power for countries in Central, Eastern and Western Africa, countries in Southern and Northern Africa trade lower amount of power relative to the total electricity demand in the regions. However, while total investment in
inter-connectors by 2030 is a mere 8.9 billion USD, this increased integration results in an estimated 3.4 billion USD reduction in annual system costs across the continent. Compared with the less ambitious Business-as-Usual Scenario (BaU), the New Deal access expansion vision implies a ramping up of investment by approximately 45 percent, or about 130 billion USD over the next 13 years. This is equal to an average increase of USD 10 billion per year. While the lion's share of this increase is related to T&D investments, the New Deal Scenario also impacts generation, as it implies an additional 38 GW of installed capacity compared with the BaU Expansion Scenario. The additional capacity consists mainly of natural gas and hydropower plants as well as solar and utility-scale batteries. Notably, the New Deal Scenario only results in a marginal increase of the total investment cost for Northern Africa because the region already has near universal access. ### Implications of analysis for AfDB and its New Deal on Energy The AfDB has embarked on its New Deal agenda in the midst of an exciting transition for the global energy sector. Renewable energy sources are already the most competitive sources of power in most markets and costs continue to fall. Energy efficient solutions are becoming wide-spread and we are witnessing a general weakening of the coupling between economic growth and demand for electricity which is likely to dampen ¹ Based on the team's review of a range of estimates including World Energy Outlook 2016 and Bloomberg New Energy Finance 2017, and is set equal to USD 20 per ton of CO2-equivalent emitted in 2020, USD 30 in 2025, and USD 40 in 2030. ² Available at: http://www.globalcarbonatlas.org/en/CO2-emissions future demand growth while also increasing the economic value of every kWh delivered. Low cost variable renewables will put national and regional power systems to the test, while utility-scale battery solutions likely will come into full maturity during the New Deal timeframe. Finally, off-grid solutions are now offering a more complex understanding of what constitutes access. Mini-grids will likely contribute to more decentralized generation, which will also dampen transmission investment needs. For the most part, these developments are foreseen and incorporated in this analysis and drive much of the results and estimates. All in all, these developments contribute to making the ambitions of the New Deal less overwhelming and more achievable. AfDB will need to be at the forefront of anticipating and leveraging on these developments. Achieving universal access is possible and perhaps requires less additional funding than previously thought, but progress is already lagging. The estimates presented in this study indicate an investment requirement of some 29-39 billion USD per year in order to achieve universal access, if an optimal investment plan is realized. This implies that with good regional planning and wise investment decisions, Africa can achieve its high ambitions within a reasonable investment window. This analysis would indicate that the AfDB can champion the view that with good and coordinated investment decisions by public, private, and multilateral investors the New Deal is possible. However, when it comes to access expansion, the indication is that the pace is already too slow when comparing the base year of 2016 with what must be achieved by 2025. The additional costs for Africa in pursuing a low carbon development path are laid out in this report and provide AfDB with an opportunity to front the case for these costs being covered by the global community. The global policy agenda already points in this direction. The global community wants to see a "clean development path" for Africa, and most international funders are no longer willing to finance fossil-fuel based generation sources. Specifically, the Low Carbon Scenario implies 10 billion USD in additional annual investment and 5.8 billion USD in additional annual system costs from 2030 compared to the reference scenario. While the costs are not astronomical, they are real and ultimately put an estimated price tag on the annual cost for the continent pursuing such a development path. Surely, AfDB is in a position to front Africa's case for the international community to cover these costs. Roadmap to the New Deal on Energy for Africa # Road Map to the New Deal on Energy for Africa ## Universal Access by 2025 - Universal access to electricity by 2025 - on-grid connections across Africa between 2016 and 2025 190 million new off-grid, mini-grid, and 80% 840 403 388 New deal access expansion ij 10 BUSD/year in investment in distribution, mini-grids & off-grid by 2025 ## Regional Integration - allows optimization of resources integration Regional - for Low-cost imports critical small countries several 8.9 BUSD in investments in inter-connectors results in 3.4 BUSD in annual system cost reductions # an ### Investments within Reach - for Africa, depending on the continent's ambition as to avoided greenhouse gas needed to realize the New Deal on Energy Annual investment of 29-39 BUSD emissions - unprecedented 80GWs completed or under already construction since 2016 continent - A total of 136GWs of new generation and storage by 2025. # Multiconsult # Falling costs for solar and batteries ensure Power Systems of the Future Hourly production profile for East Africa in 2030 - installed capacity, up from 20% in 2016, accounting for nearly 65% of total their prominent roles in the new investments By 2030, renewables make up 46% of total for nearly 65% investment in new generation. - 22 GWs of batteries are to be installed by - Regional integration and technology diversification allow for integrated regional power system management Regional ## Low Carbon Development Reference and low carbon scenarios - investments by 2030 and 5.8 BUSD/year in BUSD/vear An additional 10 system costs from 2030 - Result in avoidance of 235 mTCO2/year from 2030 - Africa needs partners in financing the green transition The New Deal on Energy for Africa 2 2 2 2 2 2 2 2 2 ### **TABLE OF CONTENTS** | Ob | jectives and approach of the study | 2 | |-----|--|----| | Exc | ecutive Summary | 3 | | 1 | Electricity access and demand | 12 | | | 1.1 Electricity access projections | 12 | | | 1.2 Electricity demand projections | 16 | | 2 | Optimal regional power supply expansion | 19 | | | 2.1 East Africa | 19 | | | 2.2 Southern Africa | 27 | | | 2.3 Western Africa | 35 | | | 2.4 Central Africa | 43 | | | 2.5 Northern Africa | 51 | | 3 | Total investment requirements and scenario implications | 58 | | | 3.1 The AfDB New Deal Reference Scenario | 58 | | | 3.2 Low Carbon Scenario | 60 | | | 3.3 Trade Stagnation Scenario | 62 | | | 3.4 Business-as-Usual Access Expansion Scenario | 65 | | 4 | Implications for AfDB | 67 | | | 4.1 The evolving path to universal access | 69 | | | 4.2 Meeting the energy demands of the New Deal | 70 | | | 4.3 Concluding remarks | 71 | | An | nex I: Regions applied in the study | 73 | | An | nex II: Tabulated year-by-year access expansion numbers for each country | 74 | | An | nex III: Tabulated year-by-year net demand for each country | 77 | | An | nex IV: Study methodology and basis for analysis | 79 | ### **LIST OF FIGURES** | Figure 0 1. Depiction of required investment ramp-up to achieve universal access targets of the New Deal and beyond into 2030 (the | | |---|-------| | draws on the analysis results but is for illustrative purposes only) | | | Figure 1 1. Access expansion projections under the New Deal | 13 | | Figure 1 2. Urban and rural access rates (2016, 2020, 2025, 2030) | 13 | | Figure 1 3. Forecasted net electricity demand by region (2016, 2020, 2025, and 2030) | | | Figure 1 4. 2025 net electricity demand projections | 1/ | | Figure 1 5. New on-grid demand in Africa, split by demand from access expansion, and organic growth | | | Figure 1 6. Projection of net on-grid electricity demand from access expansion program in 2020, 2025, and 2030 | | | Figure 2 1. Net electricity demand projections (2016, 2020, 2025, 2030) | | | Figure 2 2. Exogenously specified capacity (added and retired) by a given year by country and technology | | | Figure 2 3. Total generation capacity by country and technology | | | Figure 2 4. Hourly power generation and trade profile in 2030 | | | Figure 2 5. System costs by type | | | Figure 2 6. Net electricity demand projections (2016, 2020, 2025, 2030) | | | Figure 2 7. Exogenously specified capacity (added and retired) by a given year by country and technology | | | Figure 2 8. Total generation capacity by country and technology | 30 | | Figure 2 9. Hourly power generation and trade profile in 2030 | | | Figure 2 10. System costs by type | | | Figure 2 11. Net electricity demand projections (2016, 2020, 2025, 2030) | | | Figure 2 12. Exogenously specified capacity (added and retired) by a given year by country and technology | | | Figure 2 13. Total generation capacity by country and technology | 38 | | Figure 2 14. Hourly power generation and trade profile in 2030 | | | Figure 2 15. System costs by type | | | Figure 2 16. Net electricity demand projections (2016, 2020, 2025, 2030) | | | Figure 2 17. Exogenously specified capacity (added and retired) by a given year by country and technology | 45 | | Figure 2 18. Total generation capacity by country and technology | 46 | | Figure 2 19. Hourly power generation and trade profile in 2030 | | | Figure 2 20. System costs by type | | | Figure 2 21. Net electricity demand projections (2016, 2020, 2025, 2030) | | | Figure 2 22. Exogenously specified capacity (added and retired) by a given year by country and technology | | | Figure 2 23. Total generation capacity by
country and technology | 53 | | Figure 2 24. Hourly power generation and trade profile in 2030 | | | Figure 2 25. System costs by type | | | Figure 3 1. Total average annual investment cost 2018-2025 by type | | | Figure 3 2. Average annual generation investment cost 2018-2025 by technology | | | Figure 3 3. Average annual investment cost (total and generation) in a given period of time | | | Figure 3 4. Carbon emissions in the Reference and Low Carbon Scenarios | | | Figure 3 5. Total required generation capacity additions by technology in the Reference and Low Carbon Scenarios between 2018 and 2030 | 61 | | Figure 3 6. Total average annual investment cost 2018-2030 by type in the Reference and Low Carbon Scenarios | 62 | | Figure 3 7. System costs by type in the Reference and Low Carbon Scenarios in 2030 | 62 | | Figure 3 8. Required generation capacity additions in a selection of power importing countries in the Reference and Trade Stagr | | | Scenarios | | | Figure 3 9. Total required generation capacity additions in a selection of power importing countries by technology in the Reference and | Trade | | Stagnation Scenarios between 2018 and 2030 | 64 | | Figure 3 10. System costs by type in the Reference and Trade Stagnation Scenarios in 2030 | 64 | | Figure 3 11. Total required generation capacity additions by technology in the Reference and Business-as-Usual Scenarios between 201 | | | 2030 | | | Figure 3 12. Total average annual investment cost 2018-2030 by type in the Reference and Business-as-Usual Scenarios | | | Figure 4 1. Depiction of required investment ramp-up to achieve universal access targets of the New Deal and beyond into 2030 (figure | | | on the analysis results but is for illustrative purposes only) | 67 | ### **LIST OF ABBREVIATIONS** AfDB African Development Bank BaU Business as Usual CAGR Compound Annual Growth Rate DRC Democratic Republic of Congo EAPP East African Power Pool GDP Gross Domestic Product GHG Greenhouse gas GW Gigawatt GWh Gigawatt hour IEA International Energy Agency MUSD Million United States Dollar MW Megawatt MWh Megawatt hour USD United States Dollar T&D Transmission and Distribution TW Terawatt TWh Terawatt hour ### 1 Electricity access and demand Underlying the AfDB's New Deal on Energy for Africa³ is the recognition that access to modern energy services is a prerequisite for development. Notably, the demand for electricity services and access rates in Africa are no longer tied to grid expansion by a 1:1 ratio. Increasingly, these services are being provided by a continuum of on-grid, mini-grid and off-grid services. As economic growth persists, technology costs fall and business/financing models improve, the unserved population will obtain access through one of several service options and levels. The African Development Bank (AfDB) Strategy incorporates this reality, as does the analysis found in Section 1.1. Section 1.2 forecasts the demand to be served by grid-connected infrastructure, as a function of economic growth and industrialization , as well as increasing household and service access. As the analysis below illustrates, the combination of economic growth and rapid access expansion implies a Compound Annual Growth Rate (CAGR) in demand of nearly 5.7 percent until 2030. ### 1.1 Electricity access projections The AfDB's New Deal on Energy for Africa has as its "aspirational vision" to "achieve universal access to electricity by 2025 – 100% access in urban areas and 95% access in rural areas." This is admittedly highly ambitious, yet also comes at a time of transition, or even revolution, in the way we both measure access and the way in which the power sector of the future is expected to be built out. It also comes at a time when utility-scale solar power has become fully competitive with all other sources and prices continue to fall. It also comes at a time when the global community has committed itself to pursuing universal access electricity and a clean development path for Africa. Rather than take a view as to the feasibility of this "aspirational vision", this analysis sets out to assess the costs and investments required to achieve it. A tailor-made model has been developed to project access expansion paths across countries and access types in line with AfDB's New Deal targets. Each of the 54 countries have different starting points, and they will all follow unique paths to universal access. Nonetheless, the AfDB targets are so ambitious that most countries must see rapid access expansion and some form of "convergence" if these targets are to be met. The model developed for this study takes account of, among others, the current access rates, population density, poverty, and investment climates for each country to determine the pace and relative importance of grid, mini-grid and off-grid expansion. Please refer to Part A of Annex IV for a more detailed description of the model. As presented in the figure below, nearly 190 million new on-grid, mini-grid, and off-grid connections will have to be added across Africa between 2016 and 2025, in order to achieve AfDB's vision for Africa. By 2030 the number of new connections is forecast to exceed 240 million. This ambitious expansion program would provide all the 408 million households in Africa with access to electricity by 2030. Off-grid solutions play an important role in terms of achieving the 2025 targets, with the number of such connections peaking at around 85 million in 2025. After 2025, the number of off-grid connections are expected to decline year-on-year, as national and mini-grids expand. ³Available at: https://www.afdb.org/fileadmin/uploads/afdb/Documents/Generic-Documents/Bank_s_strategy_for_New_Energy_on_Energy_for_Africa_EN.pdf ⁴ Please refer to Part B of Annex IV for a more detailed description of the methodology and assumptions underpinning the demand projections. Figure 1-1. Access expansion projections under the New Deal The resulting urban, rural, and total connection rates are found in the figure below. While all urban households are forecast to have access to electricity by 2025, a lower starting point and higher cost per connection means that full rural access only is realized in 2030. Figure 1-2. Urban and rural access rates (2016, 2020, 2025, 2030) As outlined above, unique urban and rural access expansion paths are modelled for each country . Box 1 below visualizes these, aggregated for the five regions. Total access paths for individual countries are found in Box 2. There are striking differences in the challenges facing the different groups of countries. Many African countries will be confronting major funding and institutional capacity constraints in lifting access rates significantly and at a rapid pace. ⁵ Please refer to Part A of Annex IV for a more detailed description of the methodology and assumptions underpinning the access projections. Box 1 Forecasted access expansion paths, aggregated by region Box 2 Forecasted access expansion paths, by country ### 1.2 Electricity demand projections The forecasted electricity demand aggregates the organic demand growth following from increased economic activity (GDP growth) and the effects of the unprecedented access expansion program presented in the previous section to forecast net on-grid electricity demand for each country. The total net electricity consumption in Africa for 2016 is estimated to 652 terawatt-hours (TWh). As seen in the figure below, net consumption is forecast to reach 1,080 TWh/year by 2025, and around 1,400 TWh/year in 2030. This implies a CAGR of 5.7 percent between 2016 and 2030, marking a noticeable break from the 3.7 percent CAGR over the past 10 years estimated by the International Energy Agency (IEA) in their 2016 World Energy Outlook. The methodology and assumptions underpinning the demand projections are described in detail in Part B of Annex IV, while tabulated year-by-year net demand numbers for each country are found in Annex III. Figure 1-3. Forecasted net electricity demand by region (2016, 2020, 2025, and 2030) To allow a closer look at the forecasted 2025 net demand numbers for each region, these are presented separately in the figure below. $^{^6} A vailable\ at: https://www.iea.org/newsroom/news/2016/november/world-energy-outlook-2016.html$ Figure 1-4. 2025 net electricity demand projections **Each of the five regions have their own growth stories.** It is notable that despite strong demand growth in Central, Western, and Eastern Africa, their combined 2025 demand is still forecast to be lower than that of Southern Africa. - **Eastern Africa.** Driven by strong forecasted GDP growth in the economic engines of Ethiopia and Kenya combined with the second most ambitious grid expansion on the continent, the region is expected to see the highest demand growth of all the five regions up to 2025, with a CAGR of 11.1 percent. - Southern Africa. Due to low forecasted GDP growth and high base-year electrification rates in South Africa, the Southern region is forecast to have the lowest relative growth rate leading up to 2025 at a CAGR of 3.2 percent. As a result, demand in Northern Africa is expected to overtake Southern Africa by 2020. Likewise, Egypt is forecast to surpass South Africa as the largest electricity market on the continent between 2020 and 2025. - Western Africa. With nearly 50 million new connections before 2025, corresponding to almost 60 TWh of annual consumption, the 9.8 percent demand growth CAGR up to 2025 in West-Africa is driven mainly by access expansion. - Central Africa. On-grid demand in Central Africa is projected to grow at a CAGR of 8.8 percent up to 2025, with nearly 60 percent of the growth, or 14 TWh of 2025 demand, stemming from access expansion. The contribution to demand growth from access expansion increases to nearly 70 percent by 2030, as several major countries in the region approach universal access relatively late. - **Northern Africa.** Northern Africa already
has near universal access, so around 95 percent of the 5.6 percent demand CAGR up to 2025 stems from GDP growth. It is forecasted that Egypt will continue to dominate the region in terms of demand, accounting for more than 60 percent of the total by 2030. Even with the very ambitious access expansion program outlined above, economic growth continues to be the main driver of demand, particularly in the larger economies. As see from the figure below, access expansion is forecast to contribute some 146 TWh of new net consumption, or about 35 percent of the total increase between 2016 and 2025. Figure 1-5. New on-grid demand in Africa, split by demand from access expansion, and organic growth The figure below breaks the forecasted demand from access expansion down on the five regions. Even though East-Africa has the most ambitious access expansion program in absolute numbers, with 95 million new grid, mini-grid and off-grid connections, West Africa adds more on-grid connections. This is largely driven by Nigeria, which is forecasted to account for nearly 25 percent of new demand from access expansion on the continent by 2025. Figure 1-6. Projection of net on-grid electricity demand from access expansion program in 2020, 2025, and 2030 Finally, the Balmorel model also returns peak demand numbers for each country based, among other things, on estimated losses and demand profiles for different groups of countries. Please refer to Part B of Annex IV for details. ### 2 Optimal regional power supply expansion In order to establish baseline investment needs for the New Deal vision, a Reference Scenario has been developed for the primary analysis. The core of this analysis involves the optimization of power supply options for each of the five regions (regional groupings are found in Annex I). That is, the Balmorel Model minimizes the costs associated with meeting power demand in each country and across the region by minimizing the system (life-cycle) costs. Annex IV provides a detailed description of the key inputs and assumptions underpinning this optimization and the various scenarios. The Reference Scenario aims minimize the cost of meeting demand resulting from expected economic growth and the New Deal access targets, with no explicit ambitions as to domestic energy security or emissions reductions. Thus, it effectively provides a baseline for planning and eventually monitoring investment in and progress towards the New Deal vision. The results of the optimization exercise for each region, presented below provides the basis for estimating the generation and inter-connector investments needed to realize the Reference Scenario. Combined with investment requirements related to domestic transmission and distribution (T&D), mini-grids and off-grid, this forms the basis for the subsequent estimates of total investment needs. Further, an analysis of the Reference Scenario results in light of the other scenarios provides a powerful tool for considering country-specific, regional and continent-wide policy and financing implications. In the following sections, the results of the optimization for each region are presented, as are the key observations that can be made. ### 2.1 East Africa Burundi, Comoros, Djibouti, Eritrea, Ethiopia, Kenya, Rwanda, Seychelles, Somalia, South Sudan, Sudan, Tanzania, and Uganda. Over the next 13 years, on-grid demand in East-Africa is forecasted to grow at a CAGR of 10 percent, more than any other region in this study, resulting in a near quadrupling of total demand over the period. The growth is primarily driven by rapid access expansion, with Ethiopia, Kenya, Tanzania, and the Sudan having the largest impact. Figure 2-1. Net electricity demand projections (2016, 2020, 2025, 2030) The following key policy takeaways are highlighted from the subsequent analysis; - With almost 12 GW already under construction, only 10 GW of additional generation capacity would suffice to meet the forecasted 2025 demand. It follows that policy-makers and financiers should be highly selective in terms of which new generation projects are taken forward over this period. - Solar power complemented by utility-scale batteries as well as reservoir hydropower and natural gas power account for the majority of new investments between 2025 and 2030. - The modelling reveals that East Africa would gain from seven GW and 11 GW of new inter-connector capacity up to 2025 and 2030, respectively. This includes lines already under construction. ### 2.1.1 Generation expansion With large hydropower plants under construction in both Ethiopia and Uganda, the region is expected to add near 12 GW of new capacity between 2016 and 2025, entirely from plants which are already under construction. Adding this significant increase, representing a near doubling of total installed capacity in 2016, exogenously to the model leads to a capacity surplus in the region in the near term. As a result, very limited additional investments are required to meet demand until 2025. In fact, only an additional 10 GW are required in the entire region until 2025, beyond what is already being constructed, despite rapidly growing demand. That is, from an optimization perspective, only limited additional capacity is required throughout the region, thus implying that policy-makers and financiers should be highly selective in terms of planning for new capacity. All in all, installed capacity is forecasted to increase by approximately 180 percent from 2016 by 2025 and about 395 percent by 2030. Figure 2-2. Exogenously specified capacity (added and retired) by a given year by country and technology East-Africa is in the process of developing a diverse generation mix, with substantial flexibility being offered by reservoir hydropower, and solar becoming highly competitive in 2025 and dominant by 2030. Even with the moderate flexibility assumptions applied to the region's reservoir hydropower (see Annex IV), the flexibility offered by this source of power improves the viability and attractiveness of solar. In 2030, the optimization results in 38 percent of generation coming from reservoir hydropower and 19 percent from variable renewables – wind and solar. Nonetheless, the natural gas resources particularly in Tanzania also prove valuable, with five GW of gas-fired capacity installed in the region by 2030, 4.6 GW of which are added in Tanzania. While solar makes up some 32 percent of total capacity (including batteries) in 2030, it only accounts for 18 percent of total generation, due to low plant factors. While renewables prove highly competitive, thermal plants already under construction and low cost natural gas resources in the region result in a near 70 percent forecasted increase in emissions from the sector between 2016 and 2025. The emission intensity (ton CO2/MWh), however, is reduced from 0.27 to 0.18, due to the expanded role of renewables and relatively clean gas fired power. As Figure 2-3 demonstrates, the modelled optimal solution includes significant build out of solar in most countries in the region. Additionally, by 2030, the model recommends investment in six GW of utility-scale battery storage, with Ethiopia and Sudan leading the way. Figure 2-3. Total generation capacity by country and technology ### 2.1.2 The regional power system In addition to the back-bone inter-connector already under construction between Ethiopia and Kenya, and Kenya and Tanzania, the optimal solution includes several new inter-connectors. As depicted in the figure below, in the near term, Ethiopia's large hydropower plants allow it to emerge as a large exporter. However, this situation changes significantly over the forecast period, with Tanzania emerging as a large exporter to Kenya, who in turn exports to Ethiopia who then exports to its other neighbours. Other larger inter-connectors deemed optimal include Uganda-South Sudan, Ethiopia-South Sudan and Ethiopia-Somalia. Burundi, Djibouti, Eritrea, Somalia and South Sudan in particular are forecasted to be highly dependent on imports by 2025 and 2030, benefiting significantly from increased regional integration. Up to 2030, the region invests in 11 GW of inter-connector capacity, including the large inter-connectors already under construction. As a result, with a relatively modest average annual investment of 275 million USD each year, the region should emerge from relatively isolated national systems to a highly inter-connected regional power system over the period, with significant trade volumes. Again, the significant reservoir hydropower in the region and the inter-connectors contributing to enabling variable renewables and regional system management to meet peak demands. Estimating Investment Needs for the Power Sector in Africa Roadmap to the New Deal on Energy for Africa 24 ### 2.1.3 System operations and costs The cumulative daily production profile for the region in 2025 and 2030 is heavily influenced by the inter-play between solar and hydro/natural gas in terms of meeting the daily regional demand profile. As can be seen from the figure below, the regional integration and optimal system-wide planning allows the region to harness the characteristics of different technologies and the comparative advantage of renewable and gas resources of each country. Indeed, the region-wide optimization is a reflection of how the Eastern African Power Pool (EAPP) could contribute to an efficiently run power pool which minimizes total system costs. Figure 2-4. Hourly power generation and trade profile in 2030 Total forecasted system costs are 37 USD/MWh in 2025 and 52 USD/MWh in 2030, with the cost of capital associated with hydropower and solar power as the primary driver of the cost levels. Figure 2-5. System costs by type ### 2.1.4 Aggregate investment requirements The tables below present the aggregate investments required in the Reference Scenario for Eastern Africa from 2018 to 2025 and 2018 to 2030, respectively. Table 2-1.
Investment requirements in Eastern Africa between 2018 and 2025⁷ | | Average annual investment cost 2018-2025
(MUSD/year) | | | | | | | Total investment cost between 2018 and 2025 (MUSD) | | | | | | | |-------------------------------------|---|----------------------|-------|-----------|----------|---------------------|------------|--|--------|-----------|----------|---------------------|--|--| | | Generation | Inter-
connectors | Grid | Mini-grid | Off-grid | Total
investment | Generation | Inter-
connectors | Grid | Mini-grid | Off-grid | Total
investment | | | | Burundi | 35 | 3 | 93 | 5 | 26 | 161 | 280 | 20 | 740 | 40 | 210 | 1 290 | | | | Comoros | 13 | - | 10 | 0 | 0 | 23 | 100 | - | 80 | 0 | 0 | 180 | | | | Djibouti | 30 | - | 5 | 0 | 1 | 36 | 240 | - | 40 | 0 | 5 | 285 | | | | Eritrea | - | 8 | 19 | 1 | 14 | 41 | - | 60 | 150 | 10 | 110 | 330 | | | | Ethiopia | 794 | 99 | 563 | 53 | 256 | 1 764 | 6 350 | 790 | 4 500 | 420 | 2 050 | 14 110 | | | | Kenya | 438 | 83 | 321 | 28 | 114 | 983 | 3 500 | 660 | 2 570 | 220 | 910 | 7 860 | | | | Rwanda | 193 | 13 | 108 | 4 | 11 | 328 | 1 540 | 100 | 860 | 30 | 90 | 2 620 | | | | Seychelles | 14 | - | 0 | - | - | 14 | 110 | - | 0 | - | - | 110 | | | | Somalia | 3 | 14 | 50 | 4 | 71 | 141 | 20 | 110 | 400 | 30 | 570 | 1 130 | | | | South Sudan | 19 | 8 | 54 | 8 | 59 | 146 | 150 | 60 | 430 | 60 | 470 | 1 170 | | | | Sudan | 341 | 10 | 284 | 15 | 60 | 710 | 2 730 | 80 | 2 270 | 120 | 480 | 5 680 | | | | Tanzania | 721 | 19 | 311 | 25 | 128 | 1 204 | 5 770 | 150 | 2 490 | 200 | 1 020 | 9 630 | | | | Uganda | 511 | 4 | 339 | 23 | 93 | 969 | 4 090 | 30 | 2 710 | 180 | 740 | 7 750 | | | | Total | 3 110 | 258 | 2 155 | 164 | 832 | 6 518 | 24 880 | 2 060 | 17 240 | 1 310 | 6 655 | 52 145 | | | | Of which already under construction | 1 583 | 174 | - | - | - | 1 756 | 12 660 | 1 390 | - | - | - | 14 050 | | | ^{7 &}quot;-" denotes no investments, while "0" denotes low investments (below 2.5 million USD). For projects already under construction, 85 percent of the investment costs are considered as the investment requirements. Investments in a new inter-connector between Rwanda-DRC (300 MW) are included into the calculations. Table 2-2. Investment requirements in Eastern Africa between 2018 and 20308 | | Average annual investment cost 2018-2030
(MUSD/year) | | | | | | | Total investment cost between 2018 and 2030 (MUSD) | | | | | | | |--|---|--------------------------|-------|---------------|--------------|-------------------------|----------------|--|--------|---------------|--------------|-------------------------|--|--| | | Gener | Inter-
conne
ctors | Grid | Mini-
grid | Off-
grid | Total
invest
ment | Gener
ation | Inter-
conne
ctors | Grid | Mini-
grid | Off-
grid | Total
invest
ment | | | | Burundi | 47 | 4 | 115 | 3 | 16 | 185 | 610 | 50 | 1 490 | 40 | 210 | 2 400 | | | | Comoros | 11 | - | 8 | 0 | 0 | 18 | 140 | - | 100 | 0 | 0 | 240 | | | | Djibouti | 24 | - | 5 | 0 | 0 | 29 | 310 | - | 60 | 0 | 5 | 375 | | | | Eritrea | 1 | 7 | 19 | 2 | 8 | 37 | 10 | 90 | 250 | 20 | 110 | 480 | | | | Ethiopia | 1 419 | 107 | 655 | 55 | 158 | 2 393 | 18 450 | 1 390 | 8 510 | 710 | 2 050 | 31 110 | | | | Kenya | 621 | 64 | 352 | 28 | 70 | 1 135 | 8 070 | 830 | 4 580 | 360 | 910 | 14 750 | | | | Rwanda | 198 | 8 | 135 | 2 | 7 | 352 | 2 580 | 110 | 1 760 | 30 | 90 | 4 570 | | | | Seychelles | 12 | - | 0 | - | - | 12 | 150 | - | 0 | - | - | 150 | | | | Somalia | 11 | 23 | 85 | 6 | 47 | 172 | 140 | 300 | 1 100 | 80 | 610 | 2 230 | | | | South Sudan | 59 | 31 | 77 | 10 | 36 | 213 | 770 | 400 | 1 000 | 130 | 470 | 2 770 | | | | Sudan | 290 | 14 | 315 | 13 | 37 | 668 | 3 770 | 180 | 4 090 | 170 | 480 | 8 690 | | | | Tanzania | 608 | 12 | 342 | 30 | 78 | 1 070 | 7 910 | 150 | 4 440 | 390 | 1 020 | 13 910 | | | | Uganda | 645 | 6 | 415 | 20 | 57 | 1 143 | 8 380 | 80 | 5 400 | 260 | 740 | 14 860 | | | | Total | 3 945 | 275 | 2 522 | 168 | 515 | 7 426 | 51 290 | 3 580 | 32 780 | 2 190 | 6 695 | 96 535 | | | | Of which already
under construction | 974 | 107 | - | - | - | 1 081 | 12 660 | 1 390 | - | - | - | 14 050 | | | ### 2.2 Southern Africa Angola, Botswana, Lesotho, Madagascar, Malawi, Mauritius, Mozambique, Namibia, São Tomé & Príncipe, South Africa, Swaziland, Zambia, and Zimbabwe. Over the next 13 years, demand in Southern Africa is forecast to grow at an average CAGR of 3.2 percent, resulting in an about 55 percent increase over the entire period. The sluggish demand growth in Southern Africa compared to the other regions in this study is largely explained by the expectation that South Africa's moderate economic growth and falling energy intensity will continue. ^{8&}quot;-" denotes no investments, while "0" denotes low investments (below 2.5 million USD). For projects already under construction, 85 percent of the investment costs are considered as the investment requirements. Investments in new inter-connectors between Rwanda-DRC (300 MW) and Burundi-DRC (45 MW) are included into the calculations. Figure 2-6. Net electricity demand projections (2016, 2020, 2025, 2030) The following key policy takeaways are highlighted from the subsequent analysis; - Beyond 16.4 GW already under construction, only an additional 14 GW of generation capacity is required to meet the slow demand growth up till 2025. It follows that for this period, policy-makers and financiers can afford to be selective when planning for new capacity. - By 2030, the optimal solution suggests 47 GW of additional generation capacity, as the relative importance of coal plants is reduced in favour of reservoir hydropower and solar power supported by batteries. - The power systems in Southern Africa are already relatively well integrated, and only three and five GW of new inter-connector capacity is found optimal by 2025 and 2030 respectively. ### 2.2.1 Generation expansion Including large coal plants in South Africa and reservoir hydropower in Angola, the Southern African region has 16.4 GW of new capacity currently under construction, to be commissioned between 2016 and 2025. This is, however, expected to be countered by 7.8 GW of retirements by 2025, primarily coal fired capacity. These additions and retirements are exogenously added to and deducted from the capacity available to meet growing demand prior to running the optimization. While the net 8.6 GW increase is small relative to installed capacity, it does make a meaningful contribution to meeting the modest demand growth in the region. In fact, only an additional 14 GW of generation capacity, beyond the net 8.6 GW under construction is found to be necessary in order to meet demand in 2025. As a result, installed capacity is increased by approximately 35 percent and 80 percent by 2025 and 2030, respectively. This is modest compared to the more than quadrupling of installed capacity found optimal for East Africa by 2030. Figure 2-7. Exogenously specified capacity (added and retired) by a given year by country and technology The region's power supply continues to be dominated by coal-fired power in South Africa, but with renewables making up a significant portion of the limited new investments. This is visualised in the figure below, with hydro, solar, wind and natural gas all playing a role in the optimal generation mix already in 2020. By 2030, these technologies are playing a prominent role, with solar and utility-scale batteries becoming particularly attractive. Mozambique, Angola and Zambia all see particularly strong growth during the period. While generally attractive, the lack of a carbon price and modest requirements for new generation prevents replacement of fossil fuels and thus rapid growth in renewables. By 2030, coal plants are being retired and replaced by solar, hydro, and gas, coupled with utility-scale batteries. While variable renewables – solar and wind – only is forecasted to make up six percent of capacity (including pumped storage and batteries) and three percent of generation in 2025, the comparable numbers are 19 and 10 percent in 2030. By 2030, the model recommends installation of 15 GW of solar power, in addition to the two GW already installed by 2016, with South Africa, Angola, Zambia, Madagascar and Namibia leading the way. Particularly interesting is the emerging role of batteries in the region, not least in South Africa, which is expected to see five GW of batteries installed by 2030, offering considerable peaking capacity (see Figure 2-9). Figure 2-8. Total generation capacity by country and technology ### 2.2.2 The regional power system The Southern African power markets are already relatively well integrated, with a number of inter-connectors allowing for considerable trade. As a result, the model only includes a modest three and five GW of new inter-connection capacity by 2025 and 2030, respectively. Further, the overall trade volumes are relatively modest. The largest volumes are traded between South Africa and its neighbours, as well as between Zambia and Zimbabwe. Notably, by 2030, the largest (by far) export volumes are from Mozambique to South Africa. While there is limited need for increased integration, some new inter-connectors are deemed optimal, particularly between Namibia and Angola, Mozambique and Malawi, and South Africa and Namibia. The 300 MW back-bone inter-connector between Namibia and Zambia has been in place since 2010 and represents an important link in the regional system. While the trade volumes are limited, the regional integration is important for a few countries, including Swaziland, Lesotho, Malawi, and Namibia, who is expected to meet the majority of their demand growth towards both 2025 and 2030 by means of
imports. It is notable that with tentative modelling, which incorporates the hydro potential of the Democratic Republic of Congo into the region, there is insufficient demand in the Southern Africa region alone to justify a major build out of the Inga cascade. 0 1450 2741 5 538 Zambia Zimbabwe Mauritius 20 20 95 Tanzania Zambia Zambia 5 153 95 724 36 0 Zimbabwe Zambia Σ Σ 0 0 South Africa Zimbabwe South Africa 290 261 161 2884 2 471 Zimbabwe South Africa 28 0 0 South Africa Swaziland 1160 625 Swaziland South Africa 1254 861 25 171 1351 0 2695 2341 169 2868 5 190 0 105 0 140 1454 495 3326 1801 2 199 2 556 2 693 707 958 2792 1971 185 0 716 329 859 0 0 4222 3 433 ### 2.2.3 System operations and costs The regional system operations in 2030 are forecasted to be dominated by consumption and coal fired generation in South Africa, but with some major reservoir hydropower schemes playing an important role. Figure 2-9. Hourly power generation and trade profile in 2030 Total modelled system costs are 44 USD/MWh in 2025 and 52 USD/MWh in 2030, with the cost of coal playing a particularly important role in Southern Africa. Figure 2-10. System costs by type ### 2.2.4 Aggregate investment requirements The tables below present the aggregate investments required in the Reference Scenario for Southern Africa from 2018 to 2025 and 2018 to 2030, respectively. Table 2-3. Investment requirements in Southern Africa between 2018 and 2025 9 | | Ave | rage ann | ual invest
(MUSD | | st 2018-2 | 025 | Total ir | nvestment | cost betw | een 2018 : | and 2025 (| MUSD) | |-------------------------------------|------------|----------------------|---------------------|-----------|-----------|---------------------|------------|----------------------|-----------|------------|------------|---------------------| | | Generation | Inter-
connectors | Grid | Mini-grid | Off-grid | Total
investment | Generation | Inter-
connectors | Grid | Mini-grid | Off-grid | Total
investment | | Angola | 463 | 39 | 245 | 10 | 40 | 796 | 3 700 | 310 | 1 960 | 80 | 320 | 6 370 | | Botswana | 8 | - | 20 | 0 | 0 | 28 | 60 | - | 160 | 0 | 0 | 220 | | Lesotho | 1 | - | 10 | 1 | 5 | 17 | 5 | - | 80 | 10 | 40 | 135 | | Madagascar | 260 | - | 99 | 9 | 106 | 474 | 2 080 | - | 790 | 70 | 850 | 3 790 | | Malawi | 26 | 8 | 88 | 11 | 73 | 205 | 210 | 60 | 700 | 90 | 580 | 1 640 | | Mauritius | 173 | - | 1 | - | - | 174 | 1 380 | - | 10 | - | - | 1 390 | | Mozambique | 570 | 8 | 153 | 10 | 73 | 813 | 4 560 | 60 | 1 220 | 80 | 580 | 6 500 | | Namibia | - | 40 | 20 | 1 | 3 | 64 | - | 320 | 160 | 10 | 20 | 510 | | São Tomé &
Príncipe | 11 | - | 1 | 0 | 0 | 13 | 90 | - | 10 | 0 | 0 | 100 | | South Africa | 3 360 | 1 | 389 | - | - | 3 750 | 26 880 | 10 | 3 110 | - | - | 30 000 | | Swaziland | 1 | - | 11 | 1 | 1 | 14 | 5 | - | 90 | 5 | 10 | 110 | | Zambia | 713 | 6 | 81 | 6 | 39 | 845 | 5 700 | 50 | 650 | 50 | 310 | 6 760 | | Zimbabwe | 56 | 1 | 105 | 6 | 28 | 196 | 450 | 10 | 840 | 50 | 220 | 1 570 | | Total | 5 640 | 103 | 1 223 | 56 | 366 | 7 387 | 45 120 | 820 | 9 780 | 445 | 2 930 | 59 095 | | Of which already under construction | 3 041 | 5 | - | - | - | 3 046 | 24 330 | 40 | - | - | - | 24 370 | ^{9 &}quot;-" denotes no investments, while "0" denotes low investments (below 2.5 million USD). For projects already under construction, 85 percent of the investment costs are considered as the investment requirements. Investments in a new inter-connector between Zambia-DRC (340 MW) are included into the calculations. Table 2-4. Investment requirements in Southern Africa between 2018 and 2030¹⁰ | | Ave | rage ann | ual invest
(MUSD | | st 2018-2 | :030 | Total in | vestment | cost betw | een 2018 | 8 and 203 | 0 (MUSD) | |-------------------------------------|------------|----------------------|---------------------|-----------|-----------|---------------------|------------|----------------------|-----------|-----------|-----------|---------------------| | | Generation | Inter-
connectors | Grid | Mini-grid | Off-grid | Total
investment | Generation | Inter-
connectors | Grid | Mini-grid | Off-grid | Total
investment | | Angola | 582 | 28 | 249 | 6 | 25 | 891 | 7 570 | 370 | 3 240 | 80 | 320 | 11 580 | | Botswana | 64 | - | 15 | 0 | 0 | 78 | 830 | - | 190 | 0 | 0 | 1 020 | | Lesotho | 25 | - | 11 | 1 | 3 | 40 | 330 | - | 140 | 10 | 40 | 520 | | Madagascar | 398 | - | 143 | 12 | 65 | 619 | 5 180 | - | 1 860 | 160 | 850 | 8 050 | | Malawi | 94 | 6 | 117 | 13 | 45 | 275 | 1 220 | 80 | 1 520 | 170 | 580 | 3 570 | | Mauritius | 125 | - | 2 | - | - | 127 | 1 630 | - | 20 | - | - | 1 650 | | Mozambique | 1 031 | 6 | 172 | 12 | 45 | 1 265 | 13 400 | 80 | 2 230 | 160 | 580 | 16 450 | | Namibia | 182 | 38 | 19 | 1 | 2 | 242 | 2 370 | 500 | 250 | 10 | 20 | 3 150 | | São Tomé & Príncipe | 10 | - | 2 | 0 | 0 | 12 | 130 | - | 20 | 0 | 0 | 150 | | South Africa | 2 806 | 9 | 310 | - | - | 3 125 | 36 480 | 120 | 4 030 | - | - | 40 630 | | Swaziland | 1 | - | 15 | 0 | 1 | 17 | 10 | - | 190 | 5 | 10 | 215 | | Zambia | 745 | 4 | 99 | 7 | 24 | 879 | 9 690 | 50 | 1 290 | 90 | 310 | 11 430 | | Zimbabwe | 175 | 1 | 122 | 5 | 17 | 320 | 2 270 | 10 | 1 590 | 70 | 220 | 4 160 | | Total | 6 239 | 93 | 1 275 | 58 | 225 | 7 890 | 81 110 | 1 210 | 16 570 | 755 | 2
930 | 102 575 | | Of which already under construction | 1 872 | 3 | - | - | - | 1 875 | 24 330 | 40 | - | - | - | 24 370 | ### 2.3 Western Africa Benin, Burkina Faso, Cape Verde, Côte d'Ivoire, Gambia, Ghana, Guinea, Guinea-Bissau, Liberia, Mali, Niger, Nigeria, Senegal, Sierra Leone, and Togo. Over the next 13 years, demand in Western Africa is expected to grow at a CAGR of 8.9 percent, resulting in a near quadrupling of demand over the entire period. Access expansion is the dominant driver of demand growth, with Nigeria alone accounting for 25 percent of the total forecasted new demand from access expansion in Africa up till 2030. ¹⁰ ".." denotes no investments, while "0" denotes low investments (below 2.5 million USD). For projects already under construction, 85 percent of the investment costs are considered as the investment requirements. Investments in a new inter-connector between Zambia-DRC (340 MW) are included into the calculations. Figure 2-11. Net electricity demand projections (2016, 2020, 2025, 2030) The following key policy takeaways are highlighted from the subsequent analysis; - Approximately 23 GW of new generation capacity is needed by 2025, of which nearly half (11.4 GW) is already under construction. - By 2030, investments in 30 GW of additional generation capacity are deemed to be optimal. Even as solar power complemented by utility-scale batteries becomes more attractive, investments in natural gas power plants is expected to remain dominant. - Including a line already under construction, a total of four and six GW of new inter-connector capacity is deemed optimal by 2025 and 2030, respectively. ### 2.3.1 Generation expansion West-Africa currently has 11.4 GW of new generation capacity under construction, to be commissioned between 2016 and 2025. In particular, the 3,050 MW Mambilla and 700 MW Zungeru hydropower plants – currently under construction in Nigeria will form an important foundation for the future regional generation mix. Only 1.9 GW of existing capacity is set to retire over the same period. Even with this exogenously added net capacity increase of 9.5 GW, the model recommends an additional 12 GW to be added before 2025. Accordingly, installed capacity is forecasted to increase by approximately 130 percent from 2016 by 2025 and about 235 percent by 2030. Figure 2-12. Exogenously specified capacity (added and retired) by a given year by country and technology The region is projected to develop a highly diverse generation mix – geographically and technologically – in the optimal build out scenario. Specifically, low cost natural gas and reservoir hydropower provide the flexibility required to allow significant investments in solar towards 2030. As seen from the figure below, Nigeria, Ghana and Ivory Coast are forecast to lead the way in terms of new capacity. Interestingly, the optimization reveals that Guinea and Nigeria's reservoir hydropower potential is highly attractive, with a combined 4.5 GW of new capacity added by 2030. It is also notable that without a carbon price, the region experiences a significant build out of natural gas and even some limited coal-fired capacity. ### 2.3.2 The regional power system The region already has several inter-connectors, but should continue to develop this capacity as several key trading partners can reap benefits from the continued integration. Specifically, a total of four and six GW of new inter-connector capacity is deemed optimal by 2025 and 2030, respectively, with larger lines between Burkina Faso and Ghana, Benin and Nigeria, and Ivory Coast and Mali. Nigeria and the Ivory Coast emerge as large net exporters, providing flexible gas-fired power, while Guinea's hydropower allows it to provide exports to several of its neighbours. The sun-rich countries of Mali, Niger, Burkina Faso and Senegal all build out significant solar generation, complemented by considerable battery storage towards 2030. Estimating Investment Needs for the Power Sector in Africa ### 11131 2020 2025 2030 265 565 327 295 999 327 446 692 200 310 100 100 121 839 100 117 897 Interconnector capacity (MW) 1131 465 327 295 446 468 100 310 100 528 100 383 265 383 327 0 0 0 0.5 25 0.4 0.3 20 799 310 465 327 383 327 446 320 100 100 528 100 269 265 0 0 0 0 0.2 Benin Guinea-Bissau Côte d'Ivoire Senegal Senegal Ghana Liberia Senegal Nigeria Senegal Ghana Guinea Togo Togo Niger Mali Mali Mali Togo 20 25 30 9.0 0.3 0.3 Côte d'Ivoire Côte d'Ivoire Guinea-Bissau **Burkina Faso Burkina Faso Burkina Faso Burkina Faso** Côte d'Ivoire Guinea Guinea Guinea Guinea Benin Benin Gambia Ghana Niger Mali Mali 16 U ۵ A 8 Σ 0 ۵ œ Niger 3.1 38 Diesel & Fuel oil 52 1.9 8 Natural gas 20 83 Nigeria
Biomass 16.4 22 16 || 15 Hydro run-of-the-river Coal 11.2 20 4.7 16 Capacity expansion Interconnector Hydro reservoirs Benin Batteries Wind Solar Ghana 0.8 Burkina 2 Faso 7.5 25 20 (GW) Mali 듸 25 0.7 20 0.5 16 d'Ivoire 18 Côte 18 1.5 16 20 25 38 0003 009 Senegal 0.2 22 Liberia 20 00 16 20 25 3 Leone Sierra Guinea 30 Gambia 0.2 25 Bissau 0.2 Senegal 16 10 31 23 0.9 16 0.2 0.2 Cape 0.3 Verde 00. 692 348 Gambia Benin Senegal Nigeria ## Generation expansion and trade (GWh/year) | | From | 70 | 2020 | 2025 | 2030 | |---|---------------|---------------|-------|-------|--------| | A | Benin | Togo | 999 | 795 | 3 629 | | ٨ | Togo | Benin | 224 | 154 | 2 | | В | Burkina Faso | Mali | 0 | 621 | 344 | | В | Mali | Burkina Faso | 0 | 0 | 11 | | C | Burkina Faso | Niger | 286 | 321 | 140 | | C | Niger | Burkina Faso | 53 | 1263 | 3 542 | | D | Côte d'Ivoire | Burkina Faso | 94 | 1369 | 2 105 | | Ш | Côte d'Ivoire | Ghana | 0 | 1 | 989 | | Е | Ghana | Côte d'Ivoire | 2 373 | 17 | 63 | | ш | Côte d'Ivoire | Guinea | 3 220 | 2 545 | 2 522 | | ш | Guinea | Côte d'Ivoire | 0 | 0 | 181 | | I | Côte d'Ivoire | Mali | 2 186 | 3746 | 5 847 | | _ | Ghana | Burkina Faso | 4 367 | 5 412 | 3 411 | | _ | Ghana | Togo | 1583 | 2 696 | 954 | | _ | Togo | Ghana | 0 | 0 | 3 | | ¥ | Guinea | Guinea-Bissau | 0 | 0 | 534 | | _ | Guinea | Liberia | 46 | 611 | 71 | | _ | Liberia | Guinea | 148 | 0 | 81 | | Σ | Guinea | Mali | 0 | 0 | 534 | | Σ | Mali | Guinea | 0 | 0 | 175 | | z | Guinea | Senegal | 3 747 | 2 192 | 3 243 | | z | Senegal | Guinea | 0 | 134 | 829 | | 0 | Guinea-Bissau | Senegal | 0 | 0 | 2 | | 0 | Senegal | Guinea-Bissau | 141 | 363 | 271 | | Ь | Mali | Niger | 0 | 0 | 29 | | Д | Niger | Mali | 0 | 0 | 826 | | ~ | Niger | Nigeria | 0 | 1043 | 43 | | æ | Nigeria | Niger | 1675 | 208 | 5 034 | | S | Nigeria | Benin | 2 495 | 4 942 | 10 100 | ### 2.3.3 System operations and costs With natural gas providing a solid base-load, the cumulative daily production profile is heavily influenced by the inter-play between solar and hydro/gas in terms of meeting the daily regional demand. Figure 2-14. Hourly power generation and trade profile in 2030 Total system costs are 49 USD/MWh in 2025 and 60 USD/MWh in 2030, with the cost of capital associated with hydro, solar and natural gas power plants as the primary driver of the cost. ### 2.3.4 Aggregate investment requirements The tables below present the aggregate investments required in the Reference Scenario for Western Africa from 2018 to 2025 and 2018 to 2030, respectively. Table 2-5. Investment requirements in Western Africa between 2018 and 2025 11 | | Ave | erage anr | nual invest
(MUSD | | st 2018-20 |)25 | Total in | vestment | cost betwe | en 2018 | and 2025 | (MUSD) | |-------------------------------------|------------|----------------------|----------------------|-----------|------------|---------------------|------------|----------------------|------------|-----------|----------|---------------------| | | Generation | Inter-
connectors | Grid | Mini-grid | Off-grid | Total
investment | Generation | Inter-
connectors | Grid | Mini-grid | Off-grid | Total
investment | | Benin | 70 | - | 70 | 4 | 23 | 166 | 560 | - | 560 | 30 | 180 | 1 330 | | Burkina Faso | 15 | 35 | 120 | 10 | 50 | 230 | 120 | 280 | 960 | 80 | 400 | 1 840 | | Cape Verde | 5 | - | 1 | - | - | 6 | 40 | - | 10 | - | - | 50 | | Côte d'Ivoire | 446 | 23 | 126 | 5 | 28 | 628 | 3 570 | 180 | 1 010 | 40 | 220 | 5 020 | | Gambia | 25 | 4 | 14 | 1 | 3 | 46 | 200 | 30 | 110 | 5 | 20 | 365 | | Ghana | 464 | 19 | 159 | 1 | 6 | 649 | 3 710 | 150 | 1 270 | 10 | 50 | 5 190 | | Guinea | 241 | 30 | 76 | 5 | 28 | 380 | 1 930 | 240 | 610 | 40 | 220 | 3 040 | | Guinea-Bissau | 3 | 1 | 21 | 1 | 6 | 32 | 20 | 10 | 170 | 5 | 50 | 255 | | Liberia | 29 | 4 | 26 | 1 | 15 | 75 | 230 | 30 | 210 | 10 | 120 | 600 | | Mali | 119 | 20 | 115 | 8 | 45 | 306 | 950 | 160 | 920 | 60 | 360 | 2 450 | | Niger | 124 | 14 | 125 | 15 | 86 | 364 | 990 | 110 | 1 000 | 120 | 690 | 2 910 | | Nigeria | 1 739 | 5 | 1 954 | 14 | 50 | 3 761 | 13 910 | 40 | 15 630 | 110 | 400 | 30 090 | | Senegal | 348 | 23 | 88 | 4 | 19 | 480 | 2 780 | 180 | 700 | 30 | 150 | 3 840 | | Sierra Leone | 69 | - | 36 | 3 | 28 | 135 | 550 | - | 290 | 20 | 220 | 1 080 | | Togo | - | - | 51 | 3 | 16 | 70 | - | - | 410 | 20 | 130 | 560 | | Total | 3 695 | 176 | 2 983 | 73 | 401 | 7 328 | 29 560 | 1 410 | 23 860 | 580 | 3 210 | 58 620 | | Of which already under construction | 1 773 | 21 | - | - | - | 1 794 | 14 180 | 170 | - | - | - | 14 350 | ^{11 &}quot;-" denotes no investments, while "0" denotes low investments (below 2.5 million USD). For projects already under construction, 85 percent of the investment costs are considered as the investment requirements. Investments in a new inter-connector between Senegal-Mali (120 MW) are included into the calculations. Table 2-6. Investment requirements in Western Africa between 2018 and 203012 | | Ave | erage anr | nual invest
(MUSD | | st 2018-20 | 030 | Total in | vestment | cost betwe | een 2018 | and 2030 | (MUSD) | |-------------------------------------|------------|----------------------|----------------------|-----------|------------|---------------------|------------|----------------------|------------|-----------|----------|---------------------| | | Generation | Inter-
connectors | Grid | Mini-grid | Off-grid | Total
investment | Generation | Inter-
connectors | Grid | Mini-grid | Off-grid | Total
investment | | Benin | 53 | 11 | 69 | 3 | 14 | 150 | 690 | 140 | 900 | 40 | 180 | 1 950 | | Burkina Faso | 67 | 25 | 126 | 7 | 31 | 255 | 870 | 320 | 1 640 | 90 | 400 | 3 320 | | Cape Verde | 7 | - | 2 | - | - | 8 | 90 | - | 20 | - | - | 110 | | Côte d'Ivoire | 461 | 21 | 126 | 3 | 17 | 628 | 5 990 | 270 | 1 640 | 40 | 220 | 8 160 | | Gambia | 17 | 5 | 14 | 1 | 2 | 38 | 220 | 70 | 180 | 10 | 20 | 500 | | Ghana | 435 | 12 | 175 | 1 | 4 | 626 | 5 650 | 150 | 2 280 | 10 | 50 | 8 140 | | Guinea | 252 | 28 | 80 | 5 | 17 | 382 | 3 280 | 360 | 1 040 | 70 | 220 | 4 970 | | Guinea-Bissau | 2 | 4 | 25 | 1 | 4 | 35 | 20 | 50 | 330 | 10 | 50 | 460 | | Liberia | 63 | 2 | 35 | 2 | 9 | 112 | 820 | 30 | 460 | 20 | 120 | 1 450 | | Mali | 120 | 23 | 126 | 8 | 28 | 305 | 1 560 | 300 | 1 640 | 110 | 360 | 3 970 | | Niger | 133 | 21 | 149 | 19 | 53 | 375 | 1 730 | 270 | 1 940 | 250 | 690 | 4 880 | | Nigeria | 1 644 | 19 | 1 942 | 8 | 31 | 3 644 | 21 370 | 250 | 25 240 | 110 | 400 | 47 370 | | Senegal | 328 | 20 | 102 | 4 | 12 | 465 | 4 260 | 260 | 1 320 | 50 | 150 | 6 040 | | Sierra Leone | 115 | - | 52 | 4 | 17 | 188 | 1 500 | - | 670 | 50 | 220 | 2 440 | | Togo | 18 | 2 | 59 | 2 | 10 | 91 | 230 | 20 | 770 | 30 | 130 | 1 180 | | Total | 3 714 | 192 | 3 082 | 68 | 247 | 7 303 | 48 280 | 2 490 | 40 070 | 890 | 3 210 | 94 940 | | Of which already under construction | 1 091 | 13 | - | - | - | 1 104 | 14 180 | 170 | - | - | - | 14 350 | ### 2.4 Central Africa Cameroon, Central African Republic, Chad, Congo, Democratic Republic of Congo, Equatorial Guinea, and Gabon. Over the next 13 years, demand in the Central African region is forecasted to grow at a CAGR of 9.4 percent, resulting in a 250 percent demand increase over the entire period. The main driver of demand is access expansion in the Democratic Republic of Congo, but due to the country's socio-economic situation and geography, the model backloads the relatively costly on-grid expansion. As a result, on-grid demand growth is comparatively sluggish in the early years. ^{12 &}quot;.." denotes no investments, while "0" denotes low investments (below 2.5 million USD). For projects already under construction, 85 percent of the investment costs are considered as the investment requirements. Investments in a new inter-connector between Senegal-Mali (120 MW) are included into the calculations. ¹³ Cameroon, Central African Republic, Chad, Congo, Democratic Republic of Congo, Equatorial Guinea, Gabon. Figure 2-16. Net electricity demand projections (2016, 2020, 2025, 2030) The following key policy takeaways are highlighted from the subsequent analysis; - With little generation capacity under construction, nearly six GW will be required in order to meet the New Deal targets by 2025. This necessitates urgent action from decision makers. - Central Africa currently has only one existing inter-connector between DRC and Congo, and notably the different regions of DRC are not properly connected. Improving this situation should be a key priority. The optimal solution includes investments in two GW and five GW of new inter-connectors by 2025 and 2030, respectively. ### 2.4.1 Generation expansion Central Africa has nearly one GW of generation capacity under construction, less than one twelfth of the comparable number for Eastern Africa. Therefore, significant new investments will have to materialize quickly in order for the region to achieve the New Deal targets by 2025. Specifically, the model reveals that an additional six GW is required for the regional system by 2025, compared to the one GW that has been initiated. This clearly demonstrates that while Eastern and Southern Africa may be able to meet substantial portions of 2025 demand by means of projects already under construction, Central Africa will have to significantly and rapidly intensify efforts if it is to provide sufficient capacity. According to the model, it is optimal to increase installed capacity by approximately 110 percent and 315 percent by 2025 and 2030, respectively. Figure 2-17. Exogenously specified capacity (added and retired) by a given year by country and technology Since Central Africa currently has only one existing inter-connector, investments in new cross-border transmission lines are crucial for the development of an integrated power system. Specifically, the solar capacity is set to be added in the countries with limited hydropower potential, such as Chad and Cameroon. It is also interesting to note that even though the
absolute generation based on natural gas is set to increase, its relative importance will decline as the system expands. Figure 2-18. Total generation capacity by country and technology ### 2.4.2 The regional power system With only one existing inter-connector in Central Africa, investments in new cross-border transmission lines are crucial for the development of an integrated power system. The existing inter-connector between the Democratic Republic of Congo and Congo has a capacity of only 60 MW, and notably the different regions of the Democratic Republic of Congo are not even properly connected. In order to remedy this, and allow for better utilization of the region's resources, investments in two GW and five GW of new inter-connectors are required by 2025 and 2030, respectively. New inter-connectors are deemed to be optimal, among others, between the Democratic Republic of Congo and Congo, the Democratic Republic of Congo and Central Africa Republic, Gabon and Congo, and the Central African Republic and Chad. Enhanced integration is important for many countries in the region, including Gabon and Chad, who is set to meet the majority of their demand growth in both 2025 and 2030 by means of imports. 245 157 472 118 459 202 143 100 ### Capacity expansion Biomass & methane Diesel & fuel oil Natural gas Hydro run-of-the-river Hydro reservoirs Batteries Interconnector ### Interconnector capacity (MW) | | Interconnector | | 2020 | 2025 | - | |---|-----------------------------|-----------------------------|------|------|---| | 4 | DRC East | DRC West | 100 | 205 | | | 8 | DRC East | DRC South | 0 | 0 | | | U | DRC West | DRC South | 260 | 260 | | | D | DRC West | Central African
Republic | 0 | 0 | | | ш | DRC West | Congo | 160 | 160 | | | щ | Cameroon | Chad | 0 | 143 | | | 9 | Cameroon | Congo | 0 | 0 | | | Ξ | Cameroon | Equatorial Guinea | 102 | 245 | | | _ | Cameroon | Gabon | 0 | 157 | | | - | Central African
Republic | Chad | 100 | 100 | | | × | Central African
Republic | Congo | 118 | 118 | | | _ | Congo | Gabon | 0 | 0 | | | Σ | Equatorial Guinea | Gabon | 202 | 202 | | | | | | | | | 5 576 348 545 64 496 221 0 9446 2976 1215 3 309 0 0 59 ### 2020 2025 3014 1768 1211 1106 380 354 809 541 355 646 24 0 88 0 13 75 0 95 0 0 0 9 0 Export (GWh/year) 1319 1768 151 471 893 335 305 261 35 95 0 0 0 0 0 0 0 0 0 0 0 0 0 Equatorial Guinea Central African Central African Central African DRC South DRC South DRC West Cameroon Cameroon Cameroon Cameroon DRC South **DRC West** Gabon Republic DRC East Republic Congo Congo DRC East Republic Gabon Gabon Congo Chad Chad **Equatorial Guinea** Equatorial Guinea Central African Central African Cameroon Cameroon DRC South DRC West **DRC West** DRC West DRC West Cameroon Cameroon Congo DRC East DRC East Congo Congo Gabon Republic Congo Republic Zambia Chad Chad From В 9 I Z 0 0 9 Σ V ш 2025 2030 2020 **DRC East** DRC South 1 827 entral African Republic DRC West 11.849 23.368 56 954 Chad 752 Cameroon 10 992 22 472 Gabon Generation (GWh/year) **Equatorial Guinea** 2 994 2 181 2 231 ### 2.4.3 System operations and costs The 2030 regional system's base-load largely consists of run-of-the-river hydro and natural gas, while reservoir hydropower provides much of the peaking capacity. Interestingly, solar power supported by batteries also has a small role to play. Figure 2-19. Hourly power generation and trade profile in 2030 Total 2030 system costs are 45 USD/MWh in 2025 and 68 USD/MWh in 2030, with the cost of capital associated with hydro projects, solar power and batteries as the primary cost drivers. Figure 2-20. System costs by type ### 2.4.4 Aggregate investment requirements The tables below present the aggregate investments required in the Reference Scenario for Central Africa from 2018 to 2025 and 2018 to 2030, respectively. Table 2 7. Investment requirements in Central Africa between 2018 and 2025 14 | | Avo | erage ann | | tment co
D/year) | st 2018-20 | 025 | Total in | vestment | cost betw | een 2018 | and 2025 (| (MUSD) | |-------------------------------------|------------|----------------------|------|---------------------|------------|---------------------|------------|----------------------|-----------|-----------|------------|---------------------| | | Generation | Inter-
connectors | Grid | Mini-grid | Off-grid | Total
investment | Generation | Inter-
connectors | Grid | Mini-grid | Off-grid | Total
investment | | Cameroon | 701 | 16 | 120 | 6 | 24 | 868 | 5 610 | 130 | 960 | 50 | 190 | 6 940 | | Central African
Republic | 54 | 9 | 13 | 1 | 24 | 100 | 430 | 70 | 100 | 10 | 190 | 800 | | Chad | 29 | 13 | 69 | 10 | 66 | 186 | 230 | 100 | 550 | 80 | 530 | 1 490 | | Congo | - | 6 | 36 | 1 | 5 | 49 | - | 50 | 290 | 10 | 40 | 390 | | Democratic
Republic of Congo | 819 | 20 | 353 | 26 | 375 | 1 593 | 6 550 | 160 | 2 820 | 210 | 3 000 | 12 740 | | Equatorial Guinea | 74 | 13 | 18 | 0 | 0 | 104 | 590 | 100 | 140 | 0 | 0 | 830 | | Gabon | 11 | 10 | 8 | 0 | 0 | 29 | 90 | 80 | 60 | 0 | 0 | 230 | | Total | 1 688 | 86 | 615 | 45 | 494 | 2 928 | 13 500 | 690 | 4 920 | 360 | 3 950 | 23 420 | | Of which already under construction | 98 | 10 | - | - | - | 108 | 780 | 80 | - | - | - | 860 | Table 2 8. Investment requirements in Central Africa between 2018 and 203014 | | Ave | rage ann | ual invest
(MUSD | | st 2018-2 | 030 | Total ii | nvestment | cost betw | een 2018 | and 2030 (I | MUSD) | |-------------------------------------|------------|----------------------|---------------------|-----------|-----------|---------------------|------------|----------------------|-----------|-----------|-------------|---------------------| | | Generation | Inter-
connectors | Grid | Mini-grid | Off-grid | Total
investment | Generation | Inter-
connectors | Grid | Mini-grid | Off-grid | Total
investment | | Cameroon | 941 | 12 | 134 | 4 | 15 | 1 105 | 12 230 | 160 | 1 740 | 50 | 190 | 14 370 | | Central African
Republic | 64 | 25 | 27 | 2 | 15 | 132 | 830 | 320 | 350 | 20 | 200 | 1 720 | | Chad | 29 | 16 | 96 | 8 | 41 | 191 | 380 | 210 | 1 250 | 110 | 530 | 2 480 | | Congo | 0 | 20 | 35 | 1 | 3 | 58 | 0 | 260 | 450 | 10 | 40 | 760 | | Democratic
Republic of Congo | 1 571 | 81 | 574 | 24 | 235 | 2 484 | 20 420 | 1 050 | 7 460 | 310 | 3 050 | 32 290 | | Equatorial Guinea | 45 | 8 | 15 | 0 | 0 | 68 | 590 | 100 | 200 | 0 | 0 | 890 | | Gabon | 7 | 15 | 8 | 0 | 0 | 29 | 90 | 190 | 100 | 0 | 0 | 380 | | Total | 2 657 | 176 | 888 | 38 | 308 | 4 068 | 34 540 | 2 290 | 11 550 | 500 | 4 010 | 52 890 | | Of which already under construction | 60 | 6 | - | - | - | 66 | 780 | 80 | - | - | _ | 860 | ¹⁴ "." denotes no investments, while "0" denotes low investments (below 2.5 million USD). For projects already under construction, 85 percent of the investment costs are considered as the investment requirements. Investments in new inter-connectors between DRC-Rwanda (300 MW), DRC-Zambia (340 MW) and DRC-Burundi (45 MW) are included into the calculations. ### 2.5 Northern Africa Algeria, Egypt, Libya, Mauritania, Morocco, and Tunisia. Over the next 13 years, demand in North Africa is forecasted to grow at a CAGR of 5.3 percent, thus doubling over the period. Because the region already has near universal access, 95 percent of this increase is driven by economic growth rather than access expansion. Figure 2-21. Net electricity demand projections (2016, 2020, 2025, 2030) The following key policy takeaways are highlighted from the subsequent analysis; - 14 GW of additional generation capacity would be required in order to meet the 2025 demand, on top of the 39 GW already under construction. It is therefore important that investors and policy-makers take a critical approach to new potential project in order to avoid over-supply. - By 2030 substantial investments in solar power are found optimal, both to meet growing demand, and to replace more costly fossil production. - The North African power markets are already quite well integrated. Therefore, only two GW of new inter-connector capacity is found optimal by 2025, and four GW by 2030. ### 2.5.1 Generation expansion With some 39 GW of new capacity under construction, the region is already on track to add net capacity amounting to nearly 20 GW by 2025. With gas-fired power plants in Egypt and Algeria making up the lion's share, these 39 GW represent about 49 percent of the total capacity under construction on the African continent. Consequently, only 14 GW of additional capacity is deemed necessary in order to meet demand in 2025. That is, from an optimization perspective, only limited additional capacity is required throughout the region, thus implying that policy-makers and financiers should be highly selective in terms of planning for new capacity. Figure 2-22. Exogenously specified capacity (added and retired) by a given year by country and technology The region's power supply continues to be dominated by natural gas power, but with renewable capacity, mainly solar power, constituting 41 percent of the total required generation capacity additions. This is visualised in the figure below, with solar and natural gas playing an important role in the optimal generation mix, particularly after 2025. By 2030, solar technologies are becoming particularly attractive. According to the model, installed capacity is expected to increase by approximately 40 percent from 2016 by 2025 and about 85 percent by 2030. Figure 2-23. Total generation capacity by country and technology ### 2.5.2 The regional power system While there is limited need for increased integration, some new inter-connectors are deemed optimal, particularly between Algeria and Libya, Algeria and Morocco, and Algeria and Tunisia. According to the optimization, investments in two GW and four GW of new inter-connectors are required by 2025 and 2030, respectively. The amount of tradable power within the region is modest compared to its total electricity demand. The largest
volumes are traded between Algeria and its neighbors, especially Morocco. 4912 4912 4912 Morocco Spain Egypt 317 317 317 Jordan 232 124 1456 Libya Tunisia # Generation expansion and trade (GWh/year) ### 2.5.3 System operations and costs The cumulative daily production profile is heavily influenced by the inter-play between solar and natural gas in terms of meeting the daily regional demand profile. It is interesting to note that natural gas provides both base-load and peaking capacity, underlining its competitiveness in this environment. Figure 2-24. Hourly power generation and trade profile in 2030 Total system costs are 47 USD/MWh in 2025 and 53 USD/MWh in 2030, with the cost of capital associated with natural gas and solar power plants as the primary driver of the cost levels. ### **2.5.4** Aggregate investment requirements The tables below present the aggregate investments required in the Reference Scenario for Northern Africa from 2018 to 2025 and 2018 to 2030, respectively. Table 2 9. Investment requirements in Northern Africa between 2018 and 2025 15 | | Ave | rage anr | nual inves
(MUSI | stment co
D/year) | st 2018- | 2025 | Total inv | vestment | cost betwe | een 2018 | and 2025 | (MUSD) | |----------------------------------|------------|----------------------|---------------------|----------------------|----------|---------------------|------------|----------------------|------------|-----------|----------|---------------------| | | Generation | Inter-
connectors | Grid | Mini-grid | Off-grid | Total
investment | Generation | Inter-
connectors | Grid | Mini-grid | Off-grid | Total
investment | | Algeria | 696 | 40 | 56 | - | - | 793 | 5 570 | 320 | 450 | - | - | 6 340 | | Egypt | 1 834 | - | 406 | - | - | 2 240 | 14 670 | - | 3 250 | - | - | 17 920 | | Libya | 530 | 18 | 11 | - | - | 559 | 4 240 | 140 | 90 | - | - | 4 470 | | Mauritania | 1 | 14 | 31 | 1 | 8 | 55 | 10 | 110 | 250 | 10 | 60 | 440 | | Morocco | 1 043 | 15 | 49 | - | - | 1 106 | 8 340 | 120 | 390 | - | - | 8 850 | | Tunisia | 35 | 3 | 19 | - | - | 56 | 280 | 20 | 150 | - | - | 450 | | Total | 4 139 | 89 | 573 | 1 | 8 | 4 809 | 33 110 | 710 | 4 580 | 10 | 60 | 38 470 | | Total already under construction | 2 704 | - | - | - | - | 2 704 | 21 630 | - | - | - | - | 21 630 | Table 2 10. Investment requirements in Northern Africa between 2018 and 2030¹⁵ | | Av | erage ann | ual inves
(MUSE | | st 2018-20 | 030 | Total in | vestment | cost betwe | een 2018 | and 2030 | (MUSD) | |----------------------------------|------------|----------------------|--------------------|-----------|------------|---------------------|------------|----------------------|------------|-----------|----------|---------------------| | | Generation | Inter-
connectors | Grid | Mini-grid | Off-grid | Total
investment | Generation | Inter-
connectors | Grid | Mini-grid | Off-grid | Total
investment | | Algeria | 795 | 42 | 55 | - | - | 891 | 10 330 | 540 | 710 | - | - | 11 580 | | Egypt | 2 792 | - | 381 | - | - | 3 172 | 36 290 | - | 4 950 | - | - | 41 240 | | Libya | 432 | 11 | 11 | - | - | 454 | 5 620 | 140 | 140 | - | - | 5 900 | | Mauritania | 5 | 13 | 30 | 2 | 5 | 54 | 60 | 170 | 390 | 20 | 60 | 700 | | Morocco | 814 | 22 | 48 | - | - | 884 | 10 580 | 290 | 620 | - | - | 11 490 | | Tunisia | 248 | 2 | 18 | - | - | 268 | 3 230 | 20 | 230 | - | - | 3 480 | | Total | 5 085 | 89 | 542 | 2 | 5 | 5 722 | 66 110 | 1 160 | 7 040 | 20 | 60 | 74 390 | | Total already under construction | 1 664 | - | - | - | - | 1 664 | 21 630 | - | - | - | - | 21 630 | ^{15 &}quot;..." denotes no investments, while "0" denotes low investments (below 2.5 million USD). For projects already under construction, 85 percent of the investment costs are considered as the investment requirements. ### 3 Total investment requirements and scenario implications In addition to the AfDB New Deal Reference Scenario laid out above, three additional scenarios have been analysed, so as to explore the implications of key policy choices related to Greenhouse Gas (GHG) emission reductions, protectionism (trade stagnation), and access expansion. This chapter presents the results of these analyses, in particular as they relate to investment and system costs, along with key policy implications for decision makers. ### 3.1 The AfDB New Deal Reference Scenario The total average annual investment required to achieve the New Deal 2025 targets is estimated at 29 billion USD per year, or 230 billion USD until 2025 and 420 billion USD until 2030. With 80 GW of generation capacity and a few inter-connectors already under construction, it is estimated that some 75 billion USD out of the abovementioned 230 already is under construction. As illustrated in the figure below, the total amount required for Western Africa is estimated at 7.3 billion USD. A large share of this goes to access expansion and T&D investments, as the region, and Nigeria in particular, is set for a massive expansion of its T&D network. The relatively modest forecasted investments in Northern Africa are overwhelmingly related to generation expansion. Figure 3-1. Total average annual investment cost 2018-2025 by type While coal, reservoir hydropower, and gas account for most of the investment, solar and even utility-scale batteries in Southern Africa is forecasted to attract significant investment in 2025 and truly take off by 2030. Besides the coal capacity that is already under construction, relatively little additional coal (4.5 GW for the whole continent by 2030) is deemed optimal. While the daily production profiles of each region visualizes how the base-load, variable, and peaking technologies interact, the figure below demonstrates how investment contributes to the required diversification of regional generation mixes. Figure 3-2. Average annual generation investment cost 2018-2025 by technology With unprecedented amounts of capacity already under construction on the continent, and significant investment expected to be deployed over the next few years, additional investment needs, in particular in Southern and Northern Africa, are relatively low until 2025. However, as the systems continue to grow at cumulative rates, investment requirements are set to reach new heights in the period from 2025 to 2030. Even without dedicated efforts to avoid emissions, the model recommends an uptick in solar and battery investments towards 2030. As for investments in solar, it should be noted that on the one hand this will imply falling average plant factors and a need for balancing power sources, meaning that more capacity is required to meet the same production. On the other hand, the investment cost per MW is expected to become very low over the period, thus lowering investment needs. It is also notable that investments in utility-scale batteries are deemed optimal in South Africa by 2025. Total battery investments are forecasted to reach 22 GW by 2030, with all regions having some batteries in the optimal solution. As highlighted below, the developments described here are significantly enhanced when one considers a carbon price, or other coordinated and dedicated action to avoid future emissions in Africa. Figure 3-3. Average annual investment cost (total and generation) in a given period of time ### 3.2 Low Carbon Scenario In the Low Carbon Scenario, a price is set on GHG emission, to help mitigate global climate change. The applied carbon price is based on the team's review of a range of estimates including World Energy Outlook 2016 and Bloomberg New Energy Finance 2017, and is set equal to USD 20 per ton of CO_2 -equivalent emitted in 2020, USD 30 in 2025, and USD 40 in 2030. The introduction of dedicated emission reduction ambitions and/or carbon pricing within the Low Carbon Scenario has dramatic impacts on the optimal generation mix, investment requirements and system cost levels. In terms of system cost, the carbon price has the most prominent effect on the power system in Southern Africa, reducing the reliance on coal power plants in favor of wind, solar and hydro. This effect is also considerable for Eastern and Western Africa, since these regions rely on natural gas and partially coal in the Reference Scenario. Furthermore, the Low Carbon Scenario results in higher investment needs for all regions, and particularly for the Sothern and Northern Africa, with renewable power plants replacing more costly fossil production. Greenhouse gas emissions in the Low Carbon Scenario are forecasted to be nearly 35 percent lower than in the Reference Scenario in 2025 and about 40 percent lower in 2030. Total 2030 emission reductions as compared to the Reference Scenario amount to 235 million ton of $\rm CO_2$ -equivalent per year, equal to half the 2016 emissions of South Africa ¹⁶. Such a green shift, in accordance with the Nationally Determined Contributions set forth by all African countries during the 2015 COP 21 in Paris, would imply an increase of total system costs in 2030 by approximately five percent and an increase of annual investment needs over the forecasted period by 30 percent. Specifically, the Low Carbon Scenario would imply an increase in total system costs for Africa of 5.8 billion USD per year from 2030. ¹⁶ Available at: http://www.globalcarbonatlas.org/en/CO2-emissions Figure 3-4. Carbon emissions in the Reference and Low Carbon Scenarios Figure 3-5. Total required generation capacity additions by technology in the Reference and Low Carbon Scenarios between 2018 and 2030 17 ¹⁷ Power plants already under construction are excluded when comparing required capacity additions across the scenarios. Figure 3-6. Total average annual investment cost 2018-2030 by type in the Reference and Low Carbon Scenarios Figure 3-7. System costs by type in the Reference and Low Carbon Scenarios in 2030 ### 3.3 Trade Stagnation Scenario 18 The Trade Stagnation Scenario adds restrictions on the trade allowed in the region, to mimic a
situation where the countries fail to further integrate their power markets. In this scenario, the building of new ¹⁸ Please refer to Part D of Annex IV for a full list of scenarios modelled in this study. inter-connectors (in addition to the ones that exist and are under construction) is not permitted in the optimization, while the maximum share of imported power to cover domestic demand is also limited. The Trade Stagnation Scenario reveals that while regional integration has surprisingly limited aggregate impacts on the continental level, it is nonetheless critical for several smaller countries that stand to benefit significantly from low cost imports. At the regional levels, the investment mix in the Trade Stagnation Scenario does not differ significantly from the Reference Scenario. The most notable difference in the Trade Stagnation Scenario seems to be a substantial increase in investments in run-of-the-river hydropower in Central Africa. The limited aggregate impact is primarily driven by the dominant role of the larger power markets within each region and the fact that a number of major inter-connectors already are under construction. However, the impact of the trade restrictions is more notable in countries that in the Reference Scenario meet the majority of their demand growth by means of import. Such countries as Burundi, Eritrea, Swaziland, Lesotho, Benin, Togo, Chad, Gabon, and Mauritania would reap significant benefits from increased integration. The figures 3-8 and 3-9 display investments in generation for those countries that in the Reference Scenario are forecasted to cover more than 50 percent of their domestic demand by import in 2025 and/or 2030. The trade benefits also differ across regions due to the differing nature of their current power systems and resource base. While it is found optimal to trade significant amount of power for countries in Central, Eastern and Western Africa, countries in Southern and Northern Africa trade lower amount of power relative to the total electricity demand in the regions. However, while total investment in inter-connectors is a mere 8.9 billion USD, this increased integration results in an estimated 3.4 billion USD reduction in annual system costs across the continent. Figure 3-8. Required generation capacity additions in a selection of power importing countries in the Reference and Trade Stagnation Scenarios 19 ¹⁹ Power plants already under construction are excluded when comparing required capacity additions across the scenarios. Figure 3-9. Total required generation capacity additions in a selection of power importing countries by technology in the Reference and Trade Stagnation Scenarios between 2018 and 2030²⁰ Figure 3-10. System costs by type in the Reference and Trade Stagnation Scenarios in 2030 ²⁰ Power plants already under construction are excluded when comparing required capacity additions across the scenarios. ### 3.4 Business-as-Usual Access Expansion Scenario The Business-as-Usual Access Expansion Scenario builds loosely on the New Policies Scenario of the IEA World Energy Outlook 2014. This scenario projects that 618 million people in Sub-Saharan Africa will be without access to electricity by 2030. In the interest of simplicity, "electricity access" is taken to include grid, mini-grid and off-grid connections. To arrive at a Business-as-Usual Scenario, the overall access ambitions of the New Deal Scenario are reduced proportionally across the three access types by a total 150 million connections (roughly equal to 618 million people). Compared with the less ambitious Business-as-Usual (BaU) Scenario, the New Deal access expansion vision implies a ramping up of investment by approximately 45 percent, or about 130 billion USD over the next 13 years. This is equal to an average increase of USD 10 billion per year. While the lion's share of this increase is related to T&D investments, the New Deal Scenario also impacts generation, as it implies an additional 38 GW of installed capacity compared with the BaU Scenario. The additional capacity consists mainly of natural gas and hydropower plants as well as solar projects and utility-scale batteries. Notably, the New Deal Scenario results only in a marginal increase in the total investment cost for Northern Africa because that region already has near universal access. Figure 3-11. Total required generation capacity additions by technology in the Reference and Business-as-Usual Scenarios between 2018 and 2030²¹ ²¹ Power plants already under construction are excluded when comparing required capacity additions across the scenarios. Figure 3-12. Total average annual investment cost 2018-2030 by type in the Reference and Business-as-Usual Scenarios ### 4 Implications for AfDB The modelling results and analysis in this report have many potential policy and financing implications for the AfDB. - Overall investment requirements to achieve the New Deal. Achieving universal access is possible and perhaps requires less additional funding than previously thought. The estimates presented in this report indicate an investment requirement of some 29-39 billion USD per year to achieve universal access, if an optimal investment plan is realized. This implies that with good regional planning and wise investment decisions, Africa can achieve its high ambitions within a reasonable investment window. This analysis would indicate that the AfDB can champion the view that with good and coordinated investment decisions by public, private and multilateral investors the New Deal is possible. However, when it comes to access expansion, the indication is that the pace is already too slow when comparing the base year of 2016 with what must be achieved by 2025. - A benchmark for future investment appraisals. The analyses for each region provides AfDB staff with a rather detailed indication of what an optimal regional system is expected to look like, and thus what energy mix and inter-connectors one could expect in such a system. While the situation will change going forward, and each country has specific challenges, the results at the country and regional level can serve as benchmarks in terms of identifying and appraising future investment projects. Taken one step further, the AfDB can utilize the results to set priorities and actively pursue projects that are consistent with the outcomes presented in this analysis. - A tracking tool for monitoring progress towards the New Deal. As the estimates arrived at in this study present a development whereby optimal technology mixes, inter-connectors and overall investments are realized, the estimates provide a likely lower-bound for investments to achieve the New Deal ambitions. If followed-up and monitored actual investment levels and access levels can be compared against these projections to determine progress towards achieving these ambitions. Figure 4 1. Depiction of required investment ramp-up to achieve universal access targets of the New Deal and beyond into 2030 (figure draws on the analysis results but is for illustrative purposes only). - Sub-sector investment requirements and priorities. With more than 60 GW of generation currently under construction, additional generation needs are tempered in the near term. Meanwhile, the access expansion and demand growth rates assumed and projected in this study are aggressive, and concerted efforts will be required to realize them. That is, in the near term, ensuring access expansion and demand growth should be a priority, as such a focus will also lay the foundation for enabling further investments in generation and/or inter-connectors. Having said this, with such high access ambitions, there will have to be equal focus on enabling solar home system and mini-grid penetration. These access solutions will require as much of a policy effort as a financing one. Further, experience from the field would indicate that especially for mini-grids, sizeable subsidies will be required. Rapid grid expansion will likely require a combination of public sector lending, international grants and (cross-) subsidization. Private investment should not be expected to make significant contributions in the grid expansion space, and lowcost public-/multilateral lending will likely have to carry the lion's share of the investment. Finally, unless progress is made on the continent to improve the cost reflectiveness of utilities, a sustainable grid expansion is unlikely to emerge. Thus, AfDB's role in working with utilities on lending for grid reinforcements, technical/commercial loss efforts and policy/regulatory matters should be considered as a particular focus for its efforts in the sector throughout the continent. AfDB is already supporting many utilities in this regard, and it could very well establish itself as the leading partner in this regard, as other funders turn more and more to the private sector and off-grid solutions. - Role of specific countries in the regional context. This analysis allows for a comprehensive consideration of the relative role and comparative advantage of each sector in their respective regions. As indicated in the heatmaps below, some countries are best served by imports, while for others it will make sense to utilize low-cost and flexible resources to export. With a range of starting points, unique resource bases and falling costs for renewables, this picture will change over time as some countries can be expected to transition from net exporter to net importer and vice versa. No matter, a key finding is that the role of regional integration in allowing for an increasing share of low-cost variable renewable is likely as important as the contribution that integrations gives in terms of volume of power exchange. - Country-level prioritization. Each country has a unique starting point. In order to achieve the ambitious access targets, all countries will essentially have rapidly scale up expansion efforts. One should expect
significant variation across countries with regards to value for money, as population density, role of mini- and off-grid and resource-bases vary considerably. Across countries, this observation would indicate the need to prioritize funds. However, AfDB is likely not in a position to "cherry pick" the countries and interventions that deliver the most value for money, as this would imply leaving some countries to fend for themselves. This would not be consistent with the New Deal ambitions, which basically requires that all countries experience a considerable lift. Nonetheless, the analysis provides a basis for considering how to prioritize and stage interventions in terms of types of access, between sub-sectors and technologies. - Individual paths to universal access. With the specified ambitions of the New Deal for 2025, access to grid electricity will approach 100% by 2030. However, there is no doubt that mini-grids and particularly off-grid solutions will play a key role if the ambitions are to be achieved. Each country is unique and while all countries must experience a rapid access expansion, the path and contributions of each country to the continent-wide ambition levels will be unique. If this path is to be realized, one should carefully consider how to best achieve access expansion in each country considering the individual starting points of each country. The algorithm developed for this study and the resulting analysis should provide a good start for considering in which countries mini- and off-grid solutions will play a particularly important role until 2025. - The changing energy landscape. The AfDB has embarked on its New Deal agenda in the midst of an exciting transition for the global energy sector. Renewable energy sources are already the most competitive sources of power in most markets and the costs continue to fall. Energy efficient solutions are becoming wide-spread and one is witnessing a general weakening of the economic-demand coupling which is likely to dampen future demand growth while also increasing the economic value of every kWh delivered. Low cost variable renewables will put national and regional power systems to the test, while utility-scale battery solutions will likely come into full maturity during the New Deal timeframe. Finally, off-grid solutions are now offering a more complex understanding of what constitutes access and mini-grids will likely contribute to increased decentralized generation, which will also dampen transmission investment needs. For the most part, these developments are foreseen and incorporated in this analysis and drive much of the results and estimates. All in all, these developments contribute to making the ambitions of the New Deal less overwhelming and more achievable. AfDB will need to be at the forefront of anticipating and leveraging on these developments. - Implications of the global climate agenda for Africa. The additional costs for Africa in pursuing a low carbon development path are laid out in this report and provide AfDB with an opportunity to front the case for these costs being covered by the global community. The global policy agenda has already implied that most international funders are no longer willing to finance fossil-fuel based generation sources. Indeed, the global community wants to see a "clean development path" for Africa. Specifically, the Low Carbon Scenario implies 10 billion USD in additional annual investment and 5.8 billion USD in additional annual system costs from 2030 compared to an economically optimal development path. While the costs are not astronomical, they are real and ultimately put an estimated price tag on the annual cost for the continent to pursue such a development path. Surely, AfDB is in a position to front the continental-case for the international community to cover these costs. In order to put the specific country-needs in the continental perspective, a series of "heat-maps" have been developed. They are meant to illustrate the outlook and priorities across the continent and within countries, as determined by the optimizations and analysis done in this report. #### 4.1 The evolving path to universal access The New Deal Scenario of this study is built up so as to achieve the AfDB's definition of universal access by 2025. However, each country will follow its own pace and path towards this goal. The heat maps below visualize the key challenges facing each region and country, so as to guide the tailoring of policies and support schemes required to reach the ambitious New Deal targets. More details on country-by-country rural and urban access expansion can be found in annex II. # 4.2 Meeting the energy demands of the New Deal Ensuring supply of sufficient electricity to meet growing demand in an efficient and sustainable manner will remain a key challenge for national governments and development partners. In particular, this study clearly demonstrates the importance of understanding how national and regional comparative advantages can be leveraged to ensure rational and cost-effective utilization of the continent's energy resources. The subsequent heat maps visualize key issues related to optimal power supply and capacity expansion on the continent in the Reference Scenario. Box 4 Generation expansion heat maps for the New Deal ambitions ### 4.3 Concluding remarks This study has set out to address the investment requirements to achieve the ambitions set out in the AfDB's New Deal for Africa on Energy. The analysis provides a comprehensive state of the sector as the starting point for 2016 and incorporates our best knowledge and projections as to the future of costs and technology. Accordingly, the results provide much more than a mere estimate of investment needs. It gives insights into country-specific and regional development paths, the power system operations of the future, country-specific access expansion paths, the value of regional integration and implications of the global push towards reduced emissions. The study offers both high-level continent-wide estimates and insights that are built bottom-up for all 54 countries and 5 regions. Accordingly, the policy and financial implications of this analysis are numerous and impossible to cover in a concluding chapter without restating the full range of key findings and conclusions for each region. We encourage the reader to review carefully relevant parts of the analysis and consider the wide ranging implications of the results. The hope is that the findings and insights will provide meaning and reference points for a broad set of stakeholders looking for guidance as to what the global agenda implies for the continent, individual regions and each of the 54 countries. | East Africa | Southern
Africa | Central Africa | North
Africa | West Africa | |-------------|--------------------------|------------------------------|-----------------|---------------| | Burundi | Angola | Cameroon | Algeria | Benin | | Comoros | Botswana | Central African Republic | Egypt | Burkina Faso | | Djibouti | Lesotho | Chad | Libya | Cape Verde | | Seychelles | Malawi | Congo | Mauritania | Côte d'Ivoire | | Eritrea | Mauritius | Democratic Republic of Congo | Morocco | Gambia | | Ethiopia | Mozambique | Equatorial Guinea | Tunisia | Ghana | | Kenya | Namibia | Gabon | | Guinea | | Rwanda | Sao Tome and
Principe | | | Guinea-Bissau | | Somalia | South Africa | | | Liberia | | South Sudan | Swaziland | | | Mali | | Sudan | Zambia | | | Niger | | Tanzania | Zimbabwe | | | Nigeria | | Uganda | Madagascar | | | Senegal | | | | | | Sierra Leone | | | | | | Togo | Annex II: Tabulated year-by-year access expansion numbers for each country | al (urban & | rural) | | | | | | | | | | | | | | | | | |-----------------------|---|---|---|--|--|--|--|--|--|--|--|--|--|--|--|--|--| | Faso
rate
voire | 2014
2 449 217
4 187 137
125 342
3 884 716 | 2 518 084
4 312 053
126 884
3 984 219 | 2 588 642
4 439 627
128 467
4 085 503 | 2660 952
4 569 762
130 000
4 188 793 | 2734 762
4 702 857
131 667
4 294 138 | 2 809 762
4 838 333
133 333
4 401 897 | 2 886 429
4 976 905
135 000
4 512 414 | 2 964 286
5 118 333
136 667
4 625 517 | 3 043 333
5 262 619
138 571
4 741 034 | 3 123 571
5 409 286
140 000
4 858 966 | 3 205 000
5 559 286
141 667
4 979 310 | 3 288 095
5 712 143
143 333
5 101 897 | 3 372 143
5 868 095
145 000
5 226 552 | 3 457 619
6 026 667
146 429
5 353 448 | 3 544 286
6 188 095
148 095
5 482 586 | 3 631 905
6 352 619
149 524
5 614 138 | 3 721 190
6 519 524
151 190
5 747 759 | | Sissio | 456 631
6 419 658
2 810 835
410 891
1 045 414 | 470 855
6 567 338
2 878 936
421 554
1 071 338 | 485 357
6 715 888
2 951 410
432 309
1 098 529 | 500 238
6 865 238
3 028 095
443 095
1 126 667 | 515 238
7 015 000
3 107 857
454
048
1 155 476 | 530 476
7 165 952
3 190 000
465 238
1 185 238 | 546 190
7 317 381
3 274 048
476 429
1 215 000 | 561 905
7 470 000
3 359 524
487 619
1 245 714 | 577 857
7 623 333
3 446 429
499 048
1 276 905 | 594 286
7 777 381
3 535 000
510 476
1 308 571 | 610 952
7 932 381
3 625 238
522 143
1 340 952 | 627 619
8 088 095
3 716 905
533 810
1 373 810 | 644 524
8 244 524
3 810 476
545 476
1 407 381 | 661 667
8 401 905
3 905 238
557 381
1 441 429 | 679 048
8 560 000
4 001 429
569 286
1 475 952 | 696 667
8 719 286
4 098 810
581 190
1 510 952 | 714 524
8 879 524
4 197 857
593 571
1 546 429 | | | 4 038 773
4 559 100
43 039 147
3 463 360 | 4 159 025
4 737 373
44 190 669
3 565 951 | 4 284 485
4 922 140
45 363 327
3 669 432 | 4 414 762
5 113 810
46 557 805
3 773 810 | 4 549 524
5 312 381
47 774 634
3 879 762 | 4 687 857
5 518 333
49 015 366
3 986 667 | 4 829 524
5 732 143
50 281 220
4 095 238 | 4 974 524
5 953 810
51 572 439
4 205 476 | 5 122 619
6 183 571
52 888 780
4 317 143 | 5 274 524
6 421 905
54 231 463
4 430 238 | 5 430 000
6 668 333
55 600 976
4 545 000 | 5 589 524
6 923 333
56 998 049
4 661 190 | 5 752 857
7 187 143
58 423 415
4 779 048 | 5 919 762
7 459 762
59 876 341
4 898 571 | 6 090 238
7 741 429
61 358 049
5 019 762 | 6 264 524
8 032 143
62 868 049
5 142 619 | 6 442 381
8 331 905
64 406 829
5 267 619 | | one
ennections | 1 685 515
1 721 170
80 296 500 | 1 723 101
1 765 905
82 493 286 | 1 760 998
1 811 041
94737 154 | 1 799 286
1 856 429
87 028 741 | 1 837 857
1 902 619
89 367 820 | 1 876 905
1 949 286
91 754 643 | 1 915 952
1 996 429
94 290 300 | 1 955 000
2 044 048
96 674 861 | 1 994 286
2 092 381
99 207 930 | 2 033 571
2 141 190
101 790 429 | 2 073 095
2 190 476
101 424 810 | 2 112 857
2 240 952
107 111 612 | 2 152 857
2 291 667
109 851 157 | 2 193 095
2 343 095
112 612 429 | 2 233 333
2 395 476
115 687 054 | 2 273 571
2 448 095
118 384 091 | 2 314 048
2 501 905
121 336 255 | | onnections Fisso | 719 745
719 745
723 375
118 115 | 790 337
840 130
120 749 | 864 528
963 385
123 406 | 990 248
1 173 899
127 027 | 2018
1 122 609
1 396 588
130 745 | 2019
1 261 653
1 631 736
133 333 | 1 407 791
1 879 798
135 000 | 1 560 982
2 141 129
136 667 | 1 721 533
2 416 109
138 571 | 2023
1 889 479
2 704 677
140 000 | 2 064 989
3 007 749
141 667 | 2 240 916
3 288 518
143 333 | 2 368 962
3 538 163
145 000 | 2 500 391
3 794 051
146 429 | 2 634 939
4 056 498
148 095 | 2772 457
4 325 566
149 524 | 2 913 397
4 600 907
151 190 | | roire | 1 023 632
164 683
4 641 309
742 782 | 1 145 979
181 789
4 923 789
815 430 | 1 273 991
199 712
5 215 366
892 303 | 1 499 308
229 450
5 548 023
1 025 129 | 1 735 686
260 700
5 804 675
1 165 210 | 1 983 670
293 554
6 064 535
1 312 612 | 2 243 782
328 089
6 326 883
1 467 619 | 2 516 304
364 101
6 592 193
1 629 987 | 2 801 478
401 815
6 859 992
1 800 025 | 3 099 741
439 537
7 130 199
1 978 135 | 3 411 371
460 982
7 402 891
2 164 408 | 3 736 557
482 667
7 677 896
2 358 966 | 3 966 749
506 155
7 978 961
2 516 971 | 4 203 294
530 186
8 282 644
2 679 571 | 4 446 308
554 634
8 560 000
2 846 874 | 4 696 006
579 525
8 719 286
3 018 767 | 4 952 244
605 105
8 879 524
3 195 611 | | SSAO | 87 117
103 013
1 046 968
665 335
19 446 924 | 95 601
125 567
1 156 536
762 510
21 429 921 | 104 428
149 333
1 272 490
866 780
23 508 442 | 119 085
194 826
1 463 596
1 047 817
27 163 997 | 134 405
242 682
1 666 060
1 242 407
31 007 494 | 150 450
293 049
1 879 977
1 451 408
35 045 118 | 167 116
345 825
2 105 689
1 675 728
39 283 233 | 184 405
401 277
2 343 452
1 916 245
43 508 776 | 202 454
459 410
2 593 693
2 173 898
46 007 952 | 221 139
520 234
2 856 983
2 449 879
48 557 561 | 240 613
583 945
3 133 657
2 744 875
51 158 498 | 260 639
650 493
3 424 410
3 059 963
53 811 825 | 293 651
751 131
3 686 404
3 366 961
56 774 328 | 328 103
856 646
3 958 522
3 691 229
59 795 878 | 364 061
967 250
4 240 844
4 033 043
61 358 049 | 401.280
1.082.977
4.533.820
4.392.923
62.868.049 | 440 205
1 204 062
4 837 439
4 771 226
64 406 829 | | 70 | 1 898 506
84 303
459 677
31 925 484 | 2 026 512
114 958
503 877
35 033 663 | 2 159 720
147 003
549 973
38 290 861 | 2 366 691
210 013
630 730
43 789 837 | 2 528 892
275 844
715 361
49 429 338 | 2 673 320
344 571
803 833
55 322 819 | 2 822 279
416 153
896 219
61 501 205 | 2 975 856
490 609
992 591
67 754 573 | 3 133 748
568 096
1 093 180
72 371 954 | 3 296 006
648 475
1 197 924
77 129 930 | 3 462 569
731 969
1 306 894
82 017 076 | 3 633 357
818 528
1 420 661
87 998 729 | 3 822 814
968 884
1 544 005
92 229 141 | 4 016 912
1 125 766
1 672 026
97 581 648 | 4 215 651
1 289 296
1 805 105
101 520 646 | 4 418 863
1 459 498
1 942 683
105 361 222 | 4 626 830
1 636 704
2 085 671
309 306 945 | | d connections | 2014 | 2015
70 592
116 754 | 2006
74 191
123 256 | 2017
125 720
210 513 | 2018
132 360
222 690 | 2019
139 044
235 148 | 2000
146 138
248 062 | 2021
153 191
261 331 | 202
160 551
274 980 | 2023
167 947
288 568 | 2024
175 510
303 072 | 2025
175 926
280 769 | 2028
128 047
249 645 | 2027
131 429
255 888 | 2028
134 548
262 447 | 2029
137 518
269 068 | 2030
140 940
275 341 | | 10 | 0
0
0 | 2 635
122 347
17 106
282 480
72 648 | 2 657
128 012
17 923
291 577 | 3 620
225 317
29 738
332 657 | 3 719
236 378
31 251
256 652
140 081 | 2 588
247 984
32 853
259 860 | 1 667
260 113
34 536
262 348
155 007 | 1 667
272 521
36 011
265 310 | 1 905
285 174
37 714
267 799
170 038 | 1 429
298 264
37 722
270 206 | 1 667
311 629
21 445
272 693 | 1 667
325 186
21 684
275 005 | 1 667
230 192
23 489
301 065
158 005 | 1 429
236 545
24 031
303 683 | 1 667
243 014
24 447
277 356 | 1 429
249 698
24 892
159 286 | 1 667
256 238
25 579
160 238
176 845 | | SSBU | 0 0 | 72 648
8 484
22 554
109 568
97 176 | 76 873
8 827
23 766
115 954
104 269 | 132 826
14 656
45 493
191 106
181 037 | 15 320
47 856
202 464
194 590 | 147 402
16 045
50 368
213 917
209 001 | 16 667
52 776
225 713
224 320 | 162 368
17 289
55 453
237 762
240 517 | 170 038
18 049
58 132
250 242
257 653 | 178 110
18 685
60 824
263 289
275 982 | 186 274
19 473
63 711
276 674
294 996 | 194 558
20 027
66 548
290 753
315 088 | 33 012
100 638
261 994
306 998 | 162 600
34 452
105 515
272 118
324 267 | 167 303
35 958
110 604
282 322
341 815 | 171 893
37 219
115 728
292 976
359 880 | 38 925
121 085
303 620
378 303 | | DI | 0 0 | 1 982 996
128 006
30 655
44 199 | 2 078 522
133 208
32 045
46 097 | 3 655 555
206 971
63 011
80 757 | 3 843 497
162 201
65 831
84 631 | 4 037 624
144 428
68 727
88 472 | 4 238 115
148 959
71 582
92 386 | 4 225 543
153 576
74 456
96 373 | 2 499 176
157 892
77 487
100 589 | 2 549 610
162 259
80 379
104 743 | 2 600 936
166 563
83 494
108 970 | 2 653 328
170 788
86 559
113 767 | 2 962 503
189 456
150 356
123 344 | 3 021 550
194 098
156 881
128 021 | 1 562 171
198 739
163 530
133 079 | 1 510 000
203 212
170 203
137 578 | 1 538 780
207 968
177 205
142 989 | | I connections | 2014 | 3 308 200
2035
142 517 | 2016
282 900 | 5 498 976
2037
408 394 | \$639 522
2018
521 552 | 5 892 461
2019
620 960 | 6 278 386
2020
7/05 296 | 6253 368
2021
772 980 | 4637383
2692
822 388 | 4758006
2023
851 980 | 4 887 107
2024
860 106 | 4991 653
2025
852 859 | \$220.412
2026
833.165 | 5352 507
2027
810 090 | 3 938 988
2028
783 607 | 390 576
2029
753 597 | 2086
720 250 | | fisso
rde
coine | 0 0 | 281 926
485
238 895
24 167 | 561 187
791
471 050
47 509 | 816 542
689
671 798
67 031 | 1 052 082
281
846 405
83 254 | 1 265 230
0
992 583
95 831 | 1 453 669
0
1 107 979
104 486 | 1 614 699
0
1 190 018
108 753 | 1 745 569
0
1 235 997
108 266 | 1 843 387
0
1 243 073
1 04 210 | 1 905 486
0
1 208 375
111 351 | 1 965 600
0
1 128 866
117 471 | 1 926 138
0
1 053 174
113 215 | 1 879 923
0
971 213
108 505 | 1 826 820
0
882 902
103 456 | 1 766 920
0
788 222
98 056 | 1 699 851
0
687 023
92 114 | | SSBU | 0 0 | 132 330
169 388
27 390
80 135
247 216 | 237 619
336 189
54 975
160 416
493 627 | 307 418
487 281
81 255
235 475
721 285 | 373 070
625 692
106 561
306 538
933 868 | 420 328
750 104
130 770
373 235
1 129 233 | 449 229
858 970
153 686
434 764
1 305 123 | 459 956
950 778
175 151
490 915
1 459 266 | 452 629
1 023
917
195 076
540 955
1 589 067 | 427 440
1 076 784
213 239
584 313
1 692 268 | 384 673
1 107 767
229 555
620 483
1 766 102 | 324 493
1 115 013
243 852
648 744
1 807 917 | 210 953
1 071 127
225 348
589 258
1 737 277 | 95 014
1 022 489
205 442
524 862
1 658 171 | 969 269
183 883
455 371
1 570 572 | 911 436
160 875
380 736
1 474 357 | 849 172
136 459
300 754
1 369 400 | | 201 | 0 | 319 664
1 904 729
123 665
134 689 | 648 364
3 633 974
240 193
269 353 | 968 699
4 790 086
330 964
396 219 | 1 284 125
5 453 426
419 349
517 080 | 1 592 747
5 582 988
505 698
631 386 | 1 892 529
5 136 024
583 608
738 356 | 2 181 067
4 207 153
652 547
837 311 | 2 455 799
4 059 899
712 069
927 669 | 2 713 946
3 726 377
761 691
1 008 665 | 2 952 171
3 207 126
801 196
1 079 699 | 3 167 256
2 502 863
830 099
1 140 113 | 3 168 562
1 298 722
779 116
1 042 811 | 3 159 418
63 447
723 967
938 273 | 3 139 661
0
664 773
826 219 | 3 108 750
0
601 807
706 636 | 3 056 303
0
535 380
579 474 | | id connections | 2014 | 105 367
3932 564 | 209 745
7647 892
2005 | 304 386
30 587 522 | 391 225
12914 508 | 469 409
34 560 500 | 538 100
15 461 821
2020 | 596 442
15 697 036 | 643 614
16 512 915
2022 | 678 657
16926 031 | 700 644
16 934 733 | 708 824
16 553 969 | 648 050
14696 917 | 582 464
12 749 278 | 511 985
11 918 517 | 436 507
11 187 900 | 356 111
10 392 292
2035 | | isio
Se
Sire | 0 0 | 8 607
20 924
72
14 065
1 322 | 17 268
41 907
118
27 874
2 639 | 25 534
61 894
104
40 594
3 881 | 33 505
81 153
43
52 468
5 064 | 41 145
99 603
0
63 464
6 186 | 48 423
117 198
0
73 561
7 248 | 55 299
133 865
0
82 729
8 242 | 61 726
149 539
0
90 939
9 161 | 67 679
164 152
0
98 153
10 012 | 73 122
177 661
0
104 346
10 781 | 78 021
189 989
0
109 486
11 463 | 81 538
199 248
0
112 142
13 130 | 84 287
206 837
0
113 414
14 556 | 86 230
212 669
0
113 256
15 742 | 87 319
216 684
0
111 635
16 674 | 87 543
218 765
0
108 491
17 306 | | NO. | 0
0
0 | 13 480
11 023
993
2 845 | 26 128
22 060
1 985
5 699 | 36 307
32 562
2 942
8 427 | 44 481
42 680
3 874
11 064 | 50 598
52 376
4 779
13 605 | 54 603
61 595
5 657
16 024 | 56 456
70 300
6 505
18 328 | 56 108
78 443
7 323
20 495 | 53 516
85 981
8 109
22 523 | 48 649
92 882
8 862
24 402 | 41 457
99 097
9 591
26 124 | 32 207
113 947
11 242
30 171 | 16 875
126 871
12 808
33 772 | 0
137 775
14 263
36 891 | 0
146 538
15 630
39 517 | 153 074
16 908
41 613 | | | 0 0 | 15 005
23 050
137 280
10 581
6 609 | 30 083
47 112
265 807
21 187
13 235 | 44 568
71 224
367 612
31 075
19 578 | 58 642
95 611
447 717
40 403
25 706 | 72 262
120 201
505 427
49 101
31 601 | 85 380
144 918
540 050
57 109
37 233 | 97 959
169 666
550 890
64 359
42 581 | 109 941
194 348
537 236
70 788
47 614 | 121 308
218 860
498 378
76 328
52 329 | 132 008
243 056
433 571
80 936
56 687 | 142 009
266 857
342 061
84 539
60 691 | 165 066
316 877
212 448
94 380
70 183 | 186 063
364 999
12 094
101 522
78 700 | 204 891
410 886
0
105 820
86 171 | 221 427
454 145
0
107 151
92 573 | 235 542
494 376
0
105 409
97 870 | | ections | 0 | 5 376
271 230 | 10 727
533 829 | 15 722
762 025 | 20 441
962 854 | 24 861
1 135 209 | 28 958
1 277 955 | 32 710
1389 889 | 36 096
1469 758 | 39 095
1516 423 | 41 686
1528 660 | 43 858
1905 242 | 49 516
1 502 095 | 54 025
1 406 821 | 57 326
1 481 921 | 59 370
1568 664 | 60 123
1637 018 | | | 719 745
719 745
723 375
118 115
1 023 632 | 941 461
1 142 979
121 306
1 398 940 | 1 164 697
1 566 480
124 315
1 772 915 | 2007
1 424 176
2 052 335
127 820
2 211 701 | 1 677 666
2 529 823
131 070
2 634 559 | 1 923 758
2 996 570
133 333
3 039 717 | 2 161 510
3 450 665
135 000
3 425 322 | 2 389 261
3 889 693
136 667
3 789 050 | 2 605 647
4 311 218
138 571
4 128 413 | 2 809 138
4 712 217
140 000
4 440 968 | 2 998 217
5 090 896
141 667
4 724 091 | 3 171 796
5 444 107
143 333
4 974 908 | 3 283 665
5 663 550
145 000
5 132 065 | 3 394 767
5 880 811
146 429
5 287 921 | 3 504 776
6 095 987
148 095
5 442 466 | 3 613 374
6 309 170
149 524
5 595 862 | 3 721 190
6 519 524
151 190
5 747 759 | | iu | 164 683
4 641 309
742 782
87 117
103 013 | 207 278
5 069 599
995 841
123 985
208 546 | 249 860
5 479 113
1 250 552
161 389
315 448 | 300 362
5 891 748
1 544 972
203 282
438 728 | 349 018
6 222 226
1 833 582
244 839
560 284 | 395 571
6 535 461
2 115 092
285 999
679 889 | 439 824
6 830 716
2 388 184
326 459
796 613 | 481 096
7 108 606
2 651 065
366 061
910 520 | 519 242
7 368 729
2 902 385
404 853
1 020 860 | 553 760
7 611 154
3 140 899
442 487
1 127 070 | 583 115
7 836 213
3 365 057
479 029
1 228 830 | 611 600
8 043 846
3 573 076
514 082
1 325 361 | 632 501
8 222 122
3 702 045
530 240
1 370 560 | 653 248
8 394 533
3 828 931
546 353
1 415 280 | 673 831
8 560 000
3 953 917
562 208
1 459 512 | 694 255
8 719 286
4 076 741
577 785
1 503 231 | 714 524
8 879 524
4 197 857
593 571
1 546 429 | | | 1 046 968
665 335
19 446 924
1 898 506 | 1418 756
1 105 224
23 471 929
2 160 758 | 1 796 200
1 562 256
27 408 223
2 421 099 | 2 229 448
2 087 739
32 321 695
2 728 730 | 2 658 570
2 622 143
36 908 637
2 988 644 | 3 081 472
3 164 355
41 133 534
3 228 119 | 3 496 192
3 713 175
44 959 307
3 462 996 | 3 900 677
4 266 978
48 266 819
3 692 761 | 4 292 702
4 824 045
50 605 087
3 916 604 | 4 670 559
5 382 685
52 782 317
4 134 025 | 5 031 767
5 940 112
54 799 194
4 344 701 | 5 374 335
6 494 076
56 656 749
4 547 995 | 5 588 747
6 852 400
58 285 497
4 696 310 | 5 802 756
7 215 645
59 871 419
4 842 402 | 6 016 307
7 583 590
61 358 049
4 986 244 | 6 229 604
7 955 818
62 868 049
5 127 821 | 6 442 381
8 331 905
64 406 829
5 267 619 | | ss rates | 84 303
459 677
31 925 484 | 256 255
614 620
39 237 477 | 429 590
770 445
46 472 583 | 625 811
950 838
55 139 384 | 818 630
1 127 028
63 306 720 | 1 007 558
1 298 103
71 018 510 | 1 191 742
1 463 277
78 240 982 | 1 370 502
1 621 743
84 841 499 | 1 543 379
1 772 891
90 354 627 | 1 709 469
1 915 676
96 572 424 | 1 868 355
2 049 224
100 480 469 | 2 019 332
2 173 343
105 067 940 | 2 081 878
2 241 572
108 428 152 | 2 142 738
2 308 515
111 781 788 | 2 201 687
2 374 416
114 921 084 | 2 258 708
2 438 559
118 117 787 | 2 314 048
2 501 905
121 336 255 | | io
2 | 2014
29 %
17 %
94 % | 203
37 %
27 %
96 % | 2006
45 %
35 %
97 % | 2017
54 %
45 %
98 % | 2018
61 %
54 %
100 % | 2019
68 %
62 %
100 % | 75 %
69 %
100 % | 81 %
76 %
100 % | 86 %
82 %
100 % | 90 %
87 %
100 % | 94 %
92 %
100 % | 96 %
95 %
100 % | 97 %
97 %
97 %
100 % | 98 %
98 %
100 % | 99 %
99 %
100 % | 99 %
99 %
100 % | 100 %
100 %
100 % | | 100 | 26 %
36 %
72 %
26 %
21 % | 35 %
44 %
77 %
35 %
29 % | 43 %
51 %
82 %
42 %
37 % | 53 %
60 %
86 %
51 %
46 % | 61 %
68 %
89 %
59 % | 69 %
75 %
91 %
66 %
61 % | 76 %
81 %
93 %
73 %
69 % | 82 %
86 %
95 %
79 %
75 % | 87 %
90 %
97 %
84 %
81 % | 91 %
93 %
98 %
89 % | 95 %
95 %
99 %
93 %
92 % | 98 %
97 %
99 %
96 %
96 % | 98 %
98 %
100 %
97 %
97 % | 99 %
99 %
100 %
98 % | 99 %
99 %
100 %
99 % | 100 %
100 %
100 %
99 %
99 % | 100 %
100 %
100 %
100 %
100 % | | | 10 %
26 %
15 %
45 % | 19 %
34 %
23 %
53 % | 29 %
42 %
32 %
60 % | 39 %
50 %
41 %
69 % | 48 %
58 %
49 %
77 % | 57 %
66 %
57 %
84 % | 66 %
72 %
65 %
89 % | 73 %
78 %
72 %
94 % | 80 %
84 %
78 %
96 % | 86 %
89 %
84 %
97 % | 92 %
93 %
89 %
99 % | 96 %
96 %
94 %
99 % | 97 %
97 %
95 %
100 % | 98 %
98 %
97 %
100 % | 99 %
99 %
98 %
100 % | 99 %
99 %
99 %
100 % | 100 %
100 %
100 % | | 09 | 55 %
5 %
27 %
40 % | 61 %
15 %
35 %
48 % | 66 %
24 %
43 %
55 % | 72 %
35 %
51 %
63 % | 77 %
45 %
59 %
71 % | 81 %
54 %
67 %
77 % | 85 %
62 %
73 %
88 % | 88 %
70 %
79 %
88 % | 91 %
77 %
85 %
91 % | 93 %
84 %
89 %
94 % | 96 %
90 %
94 %
96 % | 98 %
96 %
97 %
98 % | 98 %
97 %
98 %
99 % | 99 %
98 %
99 %
99 % | 99 %
99 %
99 %
100 % | 100 %
99 %
100 %
500 % | 100 %
100 %
100 % | | ess rates | 2014
29 %
17 % | 2015
31 %
19 % | 2006
33 %
22 % | 2017
37 %
26 % | 2018
41.%
30.% | 2019
45 %
34 % | 2000
49 %
38 % | 2021
53 %
42 % | 202
57 %
46 % | 50 %
50 % |
2024
64 %
54 % | 2025
68 %
58 % | 2026
70 %
60 % | 2027
72 %
63 % | 2323
74 %
66 % | 2020
76 %
68 % | 2036
78 %
71 % | | | 94 %
26 %
36 %
72 %
26 % | 95 %
29 %
39 %
75 %
28 % | 96 %
31 %
41 %
78 %
30 % | 98 %
36 %
46 %
81 %
34 % | 99 %
40 %
51 %
83 %
37 % | 100 %
45 %
55 %
85 %
41 % | 100 %
50 %
60 %
86 %
45 % | 100 %
54 %
65 %
88 %
49 % | 100 %
59 %
70 %
90 %
52 % | 100 %
64 %
74 %
92 %
56 % | 100 %
69 %
75 %
93 %
60 % | 100 %
73 %
77 %
95 %
63 % | 76 %
76 %
79 %
97 %
66 % | 100 %
79 %
80 %
99 %
69 % | 100 %
81 %
82 %
100 %
71 % | 100 %
84 %
83 %
100 %
74 % | 100 %
86 %
85 %
100 %
76 % | | iu | 21 %
10 %
26 %
15 % | 23 %
12 %
28 %
16 % | 24 %
14 %
30 %
18 % | 27 %
17 %
33 %
20 % | 30 %
21 %
37 %
23 % | 32 %
25 %
40 %
26 % | 35 %
28 %
44 %
29 % | 38 %
32 %
47 %
32 % | 41 %
36 %
51 %
35 % | 43 %
40 %
54 %
38 % | 46 %
44 %
58 %
41 % | 49 %
47 %
61 %
44 % | 54 %
53 %
64 %
47 % | 59 %
59 %
67 %
49 % | 64 %
66 %
70 %
52 % | 69 %
72 %
72 %
55 % | 74 %
78 %
75 %
57 % | | DE | 45 %
55 %
5 %
27 % | 48 %
57 %
7 %
29 %
42 % | 52 %
59 %
8 %
30 %
45 % | 58 %
63 %
12 %
34 % | 65 %
65 %
15 %
38 % | 71 %
67 %
18 %
41 % | 78 %
69 %
22 %
45 % | 84 %
71 %
25 %
49 %
70% | 87 %
73 %
28 %
52 % | 90 %
74 %
32 %
56 %
76 % | 92 %
76 %
35 %
60 % | 94 %
78 %
39 %
63 %
81 % | 97.56
80.56
45.56
67.56
84.56 | 100 %
82 %
51 %
71 %
87% | 100 %
84 %
58 %
75 % | 100 %
86 %
64 %
79 % | 100 %
88 %
71 %
83 % | | ban | | | | | | | | | | | | | | | | | | |--|---|--|---
--	--	--	--
--	--	---	--
--	---		eholds
008 1 866 905	27 060 000 1 934 762	28 133 659 2 004 762	29 230 732 2 077 143
241 26 163 2175 638 2055 81 1702 97 448 0 213 899 18 569 14 301 85 510 23 598	130 676 33 204 44 300 346 868 207 112 942 136 580 0 300 537 24 778 0 119 867 34 992	83 456 35 196 47 163 3586600 2018 136 539 167 037 0 370 751 28 518 0 147 525 45 955 149 868 249 377	63 333 37 276 50 049 3744 85 2655 151 451 186 938 0 422 317 29 472 0 167 494 56 384
85.170 16.288 24.736 204989 41.552 48.715 0 108.012 9.564 16.039 43.242 11.511 39.173 68.474 29.327 790.427 11.303 40.293 11.303 40.293 11.303 40.293 11.303 40.293 11.303 40.293 11.303 40.293 11.303 40.293 11.303 40.293 11.303 40.293 11.303 40.293 11.303 40.293 11.303 40.293 11.303 40.293 11.303 40.293 11.303 40.293 11.303 40.293 11.303 40.293 11.303	89 229 17 241 26 163 2175488 81 702 97 448 0 0 213 899 18 559 14 3011 85 510 23 598 78 802 137 677 58 704 1497 683 16 904 11 0 259 80 752 235488	130 676 33 204 44 300 1444 588 1207 112 942 136 580 0 300 537 24 778 0 119 867 34 992 151 546 197 512 82 551 156 4955 5 943 162 437 116 594 1275 598	83 456 35 196 47 163 138860 138860 136 539 167 037 0 370 751 28 518 0 147 525 45 935 149 868 249 377 102 741 192 6755 0 148 698 148 698
63331 57.726 50.049 374461 203 151.651 165.038 0 167.0494 167.0494 167.0494 167.0494 167.0494 17.0	65 476 39 370 53 028 1881 389 156 608 194 275 0 452 876 27 305 125 088 66 097 21 21 0343 132 22 05 125 088 968 457 0 199 161 1 200 552	67 857 41 523 55 101 425 888 55 1010	70 000 43 920 43 920 43 920 53 94 15 2319 131 839 162 567 0 444 678 12 1857 0 170 183 82 886 257 294 340 973 116 591 0 0 378 170 226 897 281 280
61 0 198 61 0 1	79 524 108 164 71 702 2154 699 0 0 0 0 0 163 424 0 0 0 0 163 424 0 0 0 176 321 191 904 164 0 0 0 176 321 186 969	81.905 114.012 75.277 289999 0 0 0 0 0 126.538 0 0 0 126.538 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	84 524 120 190 79 379 245 644 645 645 645 645 645 645 645 645 6
81 150 8	70 000 4 9 200 59 425 219 010 121 219 010	72.881 46125 62.708 2.885.88 2.00 1013.49 118.825 0 0 0 147.888 89.525.71 0 0 0 0 0 40.825.89 2.00 0 0 0 147.888 99.52 124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	745.24 48 597 66 084 248194 48 597 67 087 68 084 59 57 69 097 60 007 111738 99 167 0 0 111738 99 167 0 0 43 45 54 288 519 65 475 0 0 1 289 594 1 289 594 1 290 742 1 290 742 1 290 742 1 290 932
24 736 24	89 229 17 241 26 163 2179 88 81 702 97 448 0 0 213 8899 18 559 14 301 85 510 23 598 78 802 137 677 58 704 1497 653 110 259 80 752 23 588 80 753 80 75	130 676 33 204 44 300 3464 361 44 300 3464 361 112 942 112 942 116 967 0 0 119 867 24 778 0 119 867 13 9592 15 466 13 95 12 18 16 24 19 19 19 19 19 19 19 19 19 19 19 19 19	83 456 35 196 47 163 1586 60 165 39 167 397 0 370 751 28 518 0 147 525 49 587 102 741 19 26 755 0 21 1282 148 698 169 99 17 100 100 100 100 100 100 100 100 100 1
75 905 75	79 524 108 154 71 702 224469 108 154 6 71 702 224469 108 154 6 71 702 224469 108 154 71 702 224469 108 154 71 71 71 71 71 71 71 71 71 71 71 71 71	81 905 114 012 75 277 289 599 0 0 0 0 0 0 126 633 0 0 0 0 0 138 975 63 306 137 339 150 996 13 078 0 0 15 096 13 078 15 096 15 096 15 096 15 096 16 096 17 19 19 19 19 19 19 19 19 19 19 19 19 19	84 524 120 190 79 379 245 647 120 190 79 379 245 647 120 120 120 120 120 120 120 120 120 120
72.881 46.125 62.708 2.495.146 101.339 101.339 118.825 0 0 0 392.517 2.74.390 324.838 92.74.390 0 0 0 0 147.888 86.642 0 0 0 0 0 147.888 127.839 0 0 0 0 147.888 127.839 127.8	74 5.24 48 697 66 004 249 869 76 66 004 249 869 76 66 004 249 869 76 249 869	76 905 76	79 524 108 154 17 199 124 125 125 125 125 125 125 125 125 125 125
889 18 559 14 301 85 510 18 559 17 8902 137 677 58 704 14 70 683 16 904 10 10 259 80 752 21 3889 78 1567 93 918 56 92 21 3899 36 80 20 17 91 127 20 87 39 36 80 20 77 68 20 21 77 127 20 87 39 36 80 20 77 68 20 27 58 30 37 58 30 38 59 50 38	130 676 33 204 44 300 146 Me 203 121 943 136 580 0 0 0 517 24 778 24 778 24 778 24 778 25 25 25 25 25 25 25 25 25 25 25 25 25 2	83 456 93 196 47 163 138 694 147 163 147 163 147 163 147 163 147 163 147 163 147 163 149 167 149 16	6 3331 57 276 50 049 71 151 451 165 938 0 422 217 2 427 2 167 2 167 167 648 117 142 1 164 25 1 17 6 455 1 17 76 455 1 17 76 459 1 17 76 45
40.739 40.739	89 229 17 241 26 163 27 175 81 28 170 29 29 148 315 20 31 89 31 85 31 80 31 85 31 80 31 85 31 80 31 85 31 80 31 85 31 80 31 85 31 80 31 85 31 80 31 85 31 80 31 85 31 80 31 85 31 80 31 85 31 80 31 85 31 80 31 85 31 80 31 85 31 80 31 85 31 80 31 85 31 80 31 85	130 676 33 204 44 300 146 Me 201 120 121 136 580 0 300 517 24 770 24 770 25 750 24 750 25 750 26 750 26 750 27 750 27 750 28 75	83 456 93 196 47 163 138 694 147 163 147 163 147 163 147 163 147 163 147 163 147 163 147 163 149 167 149 16
2.708 2.70	74 5.24 48 697 66 004 48 697 66 004 240 566 004 240 566 004 240 566 004 240 566 004 240 566 004 240 566 004 240 566 004 240 566 004 240 240 240 240 240 240 240 240 240	76 905 76	79 524 108 164 71702 225469 2255 266 71702 225469 2255 266 71702 2255 256 71702 2255 256 71702 2255 256 71702 256 71
147.525 49.937 102.741 1.92.741 1.92.741 1.92.741 1.92.741 1.92.741 1.92.741 1.92.741 1.92.741 1.93.888 1.93.988 1.93.988 1.93.988 1.93.988 1.93.988 1.93.988 1.93.988 1.93.988 1.93.988 1.93.988 1.93.988 1.93.988 1.93.988 1.93.988 1.93.988 1.93.988 1.93.988 1.93.988 1.93.9888 1.93.988 1.	6 333 6 333 7 37 26 50 049 7 14 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	65 476 39 370 53 028 39 310 53 028 39 1190 200 1156 608 1194 275 0 0 128 745 27 305 0 178 748 66 69 77 21 0431 32 2 205 12 5 688 968 457 0 10 302 700 119 3161 320 393 12 044 493 15 266 69 92 619 22 16 913 317 772 41 810 305 11 50 305	67 857 6 857
18 20 57 18 2	83 456 53 196 47 163 138 694 165 399 167 397 0 370 751 28 518 0 147 525 49 987 102 741 1926 755 198 688 249 397 102 741 1926 755 1927 932 88 810 176 696 186 946 256 946 266 946 279 326 956 266 946 279 326 956 279 326 956 279 327 320 605 148 1151 862 108 220 68 178 178 696 366 178 178 696 367 188 1157 378 695 384 157 388 8157 388	63331 57.75 50.049 374465 50.049 374465 151.651 1651.651 1662.762 167.994 167.994 167.994 167.994 17.192 1682.168 17.192 17.6435 17.192 17.6435 18.676 90.714 1985.799 17.76435 17.76436 17.7643	65 476 39 370 53 028 39 170 53 028 39 181 399 155 608 115 608 115 608 116 75 75 75 75 75 75 75 75 75 75 75 75 75
109 197 109	79 524 108 164 177 1702 224499 255 26 255 255 255 255 255 255 255 255	81 905 114 012 75 277 189 999 0 0 0 0 0 126 638 0 0 0 38 975 63 3975 13 028 0 0 0 289 225 13 028 17 19 762 29 225 10 79	84 524 120 190 79 379 245 649 0 0 0 0 0 0 0 87 7877 0 0 0 0 0 26 960 43 501 129 300 104 276 9 1995 114 276 9 1995 14 24 60 288 16 905 24 460 288 16 905 24 460 288 16 905 37 381 816 190 25 905 35 60 35 50 50 35 50 50 35 50 50 50
857 6 857	70 000 43 900 59 425 249 DR 200 59 59 59 59 59 59 59 59 59 59 59 59 59	72.881 46.125 62.708 2.485.148 101.349 118.625 0 0 147.888 839.2517 0 0 0 147.888 97.224 0 0 0 0 0 147.888 97.224 10.349 118.625 127.890 128.348 139.383 146.7954 149.383 146.7954 149.383 146.7954 149.37 129.344 159.383 146.7954 142.136 14	74 5.24 48 697 66 084 248 587 66 085 248 586 2
947 12 95 947 1	893 93 93 93 93 93 93 93 93 93 93 93 93 9		a connections
119 258 11	76 905 75 905 75 905 90 931 233439 0 0 0 0 0 0 0 197 109 90 197 109 90 197 109	79 524 108 164 177 1702 224499 255 26 255 255 255 255 255 255 255 255	81 905 114 012 75 277 189 999 0 0 0 0 0 126 638 0 0 0 38 975 63 3975 13 028 0 0 0 289 225 13 028 17 19 762 29 225 10 79
150 805 150 805	67 857 6 857	70 000 43 920 45 9425 219 178 219 219 219 219 219 219 219 219 219 219	72.881 46125
171 702 225 171 702 225 171 702 225 171 702 225 171 702 225 171 702 225 171 702 225 171 702 225 171 702 225 171 702 225 171 702 225 171 702 702 702 702 702 702 702 702 702 702	81 905 114 012 75 277 189 999 0 0 0 0 0 126 638 0 0 0 0 38 975 6 13 028 13 028 13 028 14 029 15 029 16 129 16 129 17 129 18 029 17 129 18 029 18 029	84 524 120 190 79 379 245 649 0 0 0 0 0 0 0 87 1877 0 0 0 0 26 560 43 501 129 300 104 276 9 195 9 195 10 10 10 10 10 10 10 10 10 10 10 10 10 1	86 905 86 905 87
493 120 493 12	67 857 6 857 6 857 6 857 6 857 6 857 6 857 6 858	70 000 43 920 59 425 239 000 59 425 239 000 59 425 239 000 59 425 239 000 59 425 239 000 59 425	72.881 46.125 62.708 2485.48 101.349 101.349 101.349 10.0 0 147.888 89.624 274.390 0 0 0 147.888 99.224 0 0 0 147.889 99.224 0 148.89 148.89 149.224 159.234 159.
505 178 156 505 178 15	86 905 86 905 87	89 99 99 1190 80 87 25 8	
857 8 857	70 000 43 920 59 425 219 018	72.881 46.125 62.708 2485.48 101.349 118.825 0 0 147.888 99.724 0 0 0 147.888 99.724 0 0 147.889 99.78 109.79	745.24 48 5677 66 084 248 5867 66 085 248 586 248 586 248 586 248 586 248 586 248 586 251 252 546 0 0 1117.78 286 554 288 519 65 475 0 0 0 252 546 252 546 253 546 254 546 255 546 255 546 256 547 256 547 256 556 256 556 256 556 256 556 256 556 256 556 256 556 256 556 256 556 256 556 256 556 256 556 256 556 256 556 256 556 256 556 256 556 566 256 566 256 566 566 256 566 566 256 566 566 256 566 566 256 566 566 256 566 566 256 566 566 566 256 566 566 566 256 566 566 566 566 256 566 566 566 566 566 566 256 566 566 566 566 566 566 566 566 566
1279 1277 208 739 3 568 202 6 1279 1277 208 739 3 568 202 6 1279 1277 208 739 3 568 202 6 6 75 6 442 1 10 370 1 20 57 6 57 6 57 7 57 7 1 58 6 8 75 6 8 75 7 77 7 7 1 76 7 1 76 7 1	130 676 33 204 44 300 34 64 360 44 300 34 64 360 112 942 115 942 116 950 0 0 119 667 34 992 115 466 127 512 128 951 136 156 580 127 512 137 51	83 456 35 196 47 163 158 606 16 339 16 37 757 0 370 751 28 518 0 147 525 49 937 102 741 19 26 755 0 21 182 148 698 160 94 17 100 11 18 100 11 18 100 11 18 100 11 18 20 11 18 10 10 18	63331 57.75 50.049 374.66 50.049 374.66 155.049 155.049 155.049 155.049 155.049 156.049 157.049 167.04
248 586 248 586 248 586 248 586 251 252 546 0 0 1117.78 286 554 288 519 65 475 0 0 0 252 546 252 546 253 546 254 546 255 546 255 546 256 547 256 547 256 548 256	76 905 76 905 75	79 524 108 164 77 702 224409 108 164 77 702 224409 108 164 77 702 224409 108 163 424 108 163 424 108 163 424 108 163 424 108 108 163 424 108 108 163 424 108 108 163 424 108 108 108 108 108 108 108 108 108 108	81 905 114 012 75 277 289 599 0 0 0 0 0 0 0 126 633 65 63 306 63 306 63 306 63 306 137 839 130 88 13 028 0 0 0 15 096 13 078 14 10 10 10 10 10 10 10 10 10 10 10 10 10
156.938 156.938	65 476 39 170 53 028 281139 155 608 1156 608 1194 173 0 127 305 0 178 748 66 097 120 431 322 205 125 088 968 457 0 120 431 322 205 125 088 15 06 097 120 431 120 431 120 431 120 431 120 431 120 431 120 431 120 431 120 431 120 431 120 431 120 431 120 431 120 431 120 431 120 431 120 431 120 431 15 56 676 92 619 15 80 51	67 857 6 857	70 000 4 3 9 20 5 9 425 2 19 0 10 5 9 425 2 19 0 10 1 2 19 2 19 2 19 2 19 2 19 2 19 2 19 2
75 905 75	79 524 108 164 77 702 224 609 108 164 67 108 164 67 108 164 67 108 164 67 108 164 67 108 164 67 108 165 165 165 165 165 165 165 165 165 165	81 905 114 012 75 277 209 99 0 0 0 0 0 0 0 126 633 63 906 137 839 130 88 13 975 13 975 14 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13	84 524 10 10 10 0 79 379 245 687 0 0 0 0 0 0 0 87 3757 0 0 0 0 26 5600 43 5011 129 300 104 726 9 195 9 195 9 195 104 726 9 195 104 726 9 195 105 107 107 108 108 108 108 108 108 108 108 108 108
6 857 6 857	70 000 4 3 9 20 5 9 425 2 110 78 2 1210 78 2 1	72.881 46.125 62.708 2.485.148 101.349 118.625 0 0 147.888 95.24 0 0 0 147.888 95.24 124.390 324.385 97.224 0 0 0 147.888 95.24 148.646 149.937 138.646 199.32 148.646 199.33 148.646 199.33 146.93 146.	74 5.24 48 697 66 084 248 784 67 66 084 248 784 67 66 085 248 784 66 085 248 784 66 085 248 784 66 085 248 784 66 085 248 784 67 28 28 619 68 78 619 68 78 619 619 619 619 619 619 619 619 619 619
25.737 25	89 229 17 241 26 163 17 1641 26 163 27 17 1641 28 17 1641 29 17 1641 20 17 1641 21 18 18 1641 21 18 18 18 18 18 18 18 18 18 18 18 18 18	130 676 33 204 44 300 144 Me 201 144 Me 201 11942 136 S80 0 0 119 867 24 778 34 992 115 466 137 512 82 551 136 157 512 137 512 137 512 147 518 148 52 516 157 518 158 543 15	83 456 93 196 47 163 136 369 177 037 0 177 037 0 177 037 0 177 037 0 177 037 177 107 179 198 189 868 249 377 102 741 192 6755 0 0 121 218 186 968 196 97 107 107 107 108 108 108 108 108 108 108 108 108 108
857 6 857	70 000 4 39 20 5 9 425 2 180 18 2 13 2 839 1 13 2 839 1 10 2 567 0 10 1 70 18 2 18 18 18 2 18 18 18 2 18 18 18 2 18 18 18 18 2 18 18 18 18 18 2 18 18 18 18 18 2 18 18 18 18 18 2 18 18 18 18 18 2 18 18 18 18 18 2 18 18 18 18 18 2 18 18 18 18 18 2 18 18 18 18 18 2 18 18 18 18 2 18 18 18 18 2 18 18 18 18 2 18 18 18 18 2 18 18 18 18 2 18 18 18 18 2 18 18 18 18 2 18 18 18 18 2 18 18 18 18 2 18 18 18 18 2 18 18 18 18 2 18 18 18 18 2 18 18 18 18 2 18 18 2 18 18 18 2 18 18 18 2 18 18 18 2 18 18 18 2 18 18 18 2 18 18 18 2 18 18 18 2 18 18 18 2 18 18 18 2 18 18 18 2 18 18 2 18 18 18 2 18 18 18 2 18 18 18 2 18 18 18 2 18 18 18 2 1	72.881 46.115 62.708 2.48.148 2.21 3.101.349 1.118.625 0 0 3.22.517 0 0 1.47.888 88.62 3.24.818 97.224 0 0 0 0 0 0 0 0 0	74 5.24 48 597 66 0.08 4 85 57 66 0.08 4 85 57 66 0.08 5 248 58 5 5 5 248 5 5 5 224 6 0.0 3 1.2 49 5 6 5 5 2 24 6 0.0 0 111 738 6 7 5 5 2 24 6 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
166 190 1 214 286	1 178 571 1 230 476	1 190 238 1 246 190	1 201 667
981	10 781 48 649 92 882	11 463 41 457 99 097	13 130 32 207 113 947
000 3 910 687	22 944 29,3 % 9 600 8 000 4 550 795	23 947 4,4 % 10 075 8 000 4 947 925	-8 25 008 4,4 % 10 573 8 000 5 370 1 065
431	12 868 7,3 % 10 450 0 1 983	5 13 860 7,7 % 10 697 0 2 598	6 14 996 8,2 % 11 004 0 3 286
634 0	20 281 2,6 % 20 116 0	20 838 2,8 % 20 637 0	21 439 2,9 % 21 199 0
246 6,1 % 34 344 0 36 978	85 123 6,1 % 36 042 0 39 790		39 Rwanda
30 8 14 954 0,9 % 14 920 0	15 075 0,8 % 15 007 0	122 32 15 459 2,5 % 15 355 0	188 50 15 996 3,5 % 15 856 0
factors, and iii) allows for both scenario testing and prioritization considerations for the AfDB with regards to level of effort and relevant strategies for access expansion in the various regions and countries. In practice, each country is given a "score" according to its geospatial and macro-economic starting point. The relative country scores are designed to account for the following indicators: • Income level: GDP/capita Poverty level: % of population living on >1.9USD Geospatial: Population density • Investment attractiveness: Doing Business score Public investment opportunity: GDP/public debt Specific data applied are found in the table below. Annex table E Geospatial and macro-economic base-year (2014) indicators applied in the access expansion scoring		Population density	Pov (%>1.9)
http://www.imf.org/external/datamapper/NGDP_RPCH@WEO/OEMDC/ADVEC/WEOWORLD #### c) GDP elasticity of demand For numbers on how demand for electricity changes as the economy grows, the GDP elasticity of demand, this study relies on the approximate results of the econometric exercise conducted by PIDA (2015). The applied numbers are found in the table below. Annex table I GDP elasticities of demand for the different country groupings	Group	Elasticities of demand	
4		-	
Subcritical steam coal | Coal | 35 % | 1.88 | 46.90 | 3.91 | | Supercritical steam coal | Coal | 40 % | 2.30 | 65.84 | 5.54 | | Nuclear power | Uranium | 33 % | 10.41 | 146.30 | 0.00 | | Geothermal | Heat | 35 % | 4.49 | 45.20 | 3.23 | ²⁶ Based on Eastern Africa Power Pool Master Plan (2014), West African Power Pool: Planning and Prospects for Renewable Energy by IRENA (2013), Construction Intelligence Center (2017), Efficiency in Electricity Generation by EURELECTRIC & VGB (2003). Hydro potential (in MW) for each country is split into three equal groups with different cost levels. The first group of projects is assumed to have the lowest capital expenditures (cost level 1), and the costs are assumed to increase by 15% (cost level 2) and 25% (cost level 3) for the second and third groups. Moreover, there are three groups of countries that have different initial levels of capital expenditures, as displayed in the table below. Existing hydro power plants, as well as those under construction, are assumed to have the same operating and maintenance (O&M) costs as future hydro projects presented in the table below. Hydro reservoirs in most of the countries are assumed to have an active storage of 2 weeks. Among countries that have reservoirs with 4 weeks of active storage are Ethiopia, Mozambique and Zambia. Hydro reservoirs in Democratic Republic of Congo (West) are assumed to have 1 week of active storage. Annex table R Applied costs of future hydro power plants 27 | Country group | Cost
level | Capital
expenditures
(million USD/MW) | Fixed O&M costs
(thousand USD/MW) | Variable O&M
costs
(USD/MWh) | |--|---------------|---|--------------------------------------|------------------------------------| | Angola | 1 | 2.09 | 47.58 | 3.40 | | | 2 | 2.40 | 47.58 | 3.40 | | | 3 | 3.00 | 47.58 | 3.40 | | Cameroon, Democratic | 1 | 2.55 | 47.58 | 3.40 | | Republic of Congo (West),
Ethiopia, Mozambique, | 2 | 2.93 | 47.58 | 3.40 | | Zambia | 3 | 3.67 | 47.58 | 3.40 | | Other African countries | 1 | 3.00 | 47.58 | 3.40 | | | 2 | 3.45 | 47.58 | 3.40 | | | 3 | 4.31 | 47.58 | 3.40 | Solar and wind power plants have zero variable O&M costs. Future concentrated solar projects are assumed to have efficiency of 98% and storage capacity of 7 hours. Data on hourly viability of solar and wind power is extracted from Renewables.ninja. Existing solar photovoltaic projects have O&M costs of 26.05 thousand USD per MW, and existing wind power plants have 48.60 thousand USD per MW. Existing concentrated solar power plants have either no storage capacity or project-specific storage capacity ranging from 2 to 9.3 hours. O&M costs of existing concentrated solar power plants range from 35.20 to 39.20 thousand USD per MW. ²⁷ Based on Eastern Africa Power Pool Master Plan (2014) and Construction Intelligence Center (2017). Annex table S Applied costs of future solar and wind power plants 28 | | Capital expenditures
(million USD/MW) | Fixed O&M costs (thousand USD/MW) | |-------------------------------|--|-----------------------------------| | Solar photovoltaic 2020 | 0.85 | 18.06 | | Solar photovoltaic 2025 | 0.69 | 18.06 | | Solar photovoltaic 2030 | 0.60 | 18.06 | | Concentrated solar power 2020 | 3.87 | 36.00 | | Concentrated solar power 2025 | 3.37 | 34.00 | | Concentrated solar power 2030 | 3.13 | 32.00 | | Onshore wind 2020 | 1.33 | 47.52 | | Onshore wind 2025 | 1.28 | 46.19 | | Onshore wind 2030 | 1.23 | 44.91 | Investments in battery technologies presented in the table below are allowed in 2025 and 2030. The battery technologies have a degradation rate of 10% over 5 years and zero O&M costs. Existing hydro pumped storages are modelled in the same way as the battery technologies. Hydro pumped storages in Southern Africa have efficiency of 74%, while hydro pumped storages in Morocco have efficiency of 76%. Operating and maintenance costs for hydro pumped storage are assumed to be the same as for other hydro projects. Annex table T Applied costs and efficiency of future battery technologies 29 | | Efficiency (%) | Capital expenditures
(million USD/MW) | Hours to load/unload storage | |------------------|----------------|--|------------------------------| | Lead-acid 2025 | 83 % | 0.14 | 3, 5, 8 | | Lead-acid 2030 | 84 % | 0.10 | 3, 5, 8 | | Lithium-ion 2025 | 96 % | 0.38 | 3, 5, 8 | | Lithium-ion 2030 | 97 % | 0.25 | 3, 5, 8 | ²⁸ Based on Bloomberg New Energy Finance (2016), Solar Thermal Electricity Global Outlook by Solar PACES, Greenpeace, ESTELA (2016), Forecasting Wind Energy Costs & Cost Drivers by IEA Wind (2016). ²⁹ Based on Electricity Storage and Renewables: Costs and Markets to 2030 by IRENA (2017). ### d) Fuel prices 30 There are two groups of countries that are assumed to have lower price for natural gas than the price presented in the table below. The first group consists of countries that produce natural gas and therefore are assumed to have twice lower natural gas price. Among them are Algeria, Angola, Cameroon, Côte d'Ivoire, Egypt, Equatorial Guinea, Ghana, Libya, Mozambique, Nigeria, Congo, Tanzania and Tunisia. Countries categorized in the second group are assumed to have a medium price level for natural gas. Among them are Benin, Morocco and Togo, countries that have a good existing infrastructure for supply of natural gas, as well as Mauritania, which has potential for natural gas production yet lacks facilities. ### Annex table U Applied fuel prices (USD/MWh) | | Fuel oil | Natural
gas | Coal | Diesel | Methane | Biomass | Nuclear | |------|----------|----------------|------|--------|---------|---------|---------| | 2016 | 35.4 | 33.4 | 8.2 | 83.2 | 0.0 | 5.9 | 3.9 | | 2017 | 39.2 | 33.2 | 8.5 | 89.5 | 0.0 | 5.9 | 3.9 | | 2018 | 42.9 | 33.1 | 8.7 | 95.8 | 0.0 | 5.9 | 3.9 | | 2019 | 46.6 | 32.9 | 9.0 | 102.1 | 0.0 | 5.9 | 3.9 | | 2020 | 50.4 | 32.8 | 9.2 | 108.4 | 0.0 | 5.9 | 3.9 | | 2021 | 53.2 | 33.8 | 9.4 | 111.4 | 0.0 | 5.9 | 3.9 | | 2022 | 56.1 | 34.9 | 9.6 | 114.4 | 0.0 | 5.9 | 3.9 | | 2023 | 58.9 | 35.9 | 9.8 | 117.3 | 0.0 | 5.9 | 3.9 | | 2024 | 61.8 | 36.9 | 10.0 | 120.3 | 0.0 | 5.9 | 3.9 | | 2025 | 64.7 | 38.0 | 10.3 | 123.3 | 0.0 | 5.9 | 3.9 | | 2026 | 67.5 | 39.0 | 10.5 | 126.3 | 0.0 | 5.9 | 3.9 | | 2027 | 70.4 | 40.1 | 10.7 | 129.2 | 0.0 | 5.9 | 3.9 | | 2028 | 73.3 | 41.1 | 10.9 | 132.2 | 0.0 | 5.9 | 3.9 | | 2029 | 76.1 | 42.1 | 11.1 | 135.2 | 0.0 | 5.9 | 3.9 | | 2030 | 79.0 | 43.2 | 11.3 | 138.2 | 0.0 | 5.9 | 3.9 | ³⁰ Based on IEA World Energy Outlook (2016), Harnessing African Natural Gas by Economic Consulting Associates (2016), West African Power Pool by IRENA (2017), http://www. globalpetrolprices.com/ ### e) Hydropower potential (MW) The hydropower potential of different countries is established using Construction Intelligence Center (2017), Eastern Africa Power Pool Master Plan (2014), West and South African Power Pools: Planning and Prospects for Renewable Energy by IRENA (2013) and other country-specific sources. Annex table V Economic hydropower potential applied in the study | | Reservoir | Run-of-
river | |------------------------------|-----------|------------------| | Algeria | 124 | 130 | | Angola | 3 356 | 255 | | Benin | 160 | | | Burkina Faso | 166 | 140 | | Burundi | 154 | 32 | | Cameroon | 2 918 | 3 068 | | Central African
Republic | | 2 000 | | Congo | | 2 500 | | Democratic Republic of Congo | 96 | 41 216 | | Equatorial Guinea | | 400 | | Ethiopia | 12 438 | 22 573 | | Gabon | | 453 | | Gambia | 25 | 42 | | Ghana | 462 | | | Guinea-Bissau | 5 | 9 | | Guinea | 3 326 | 15 | | Ivory Coast | 2 377 | 242 | | Kenya | 90 | 151 | | Lesotho | 100 | 110 | | Liberia | 200 | | | | Reservoir | Run-of-
river | |--------------------------|-----------|------------------| | Madagascar | 712 | 1 921 | | Malawi | 227 | 950 | | Mali | 303 | 54 | | Mauritius | 17 | 1 | | Morocco | 233 | 92 | | Mozambique | 2 575 | 1 500 | | Namibia | 600 | 220 | | Nigeria | 1 618 | 3 500 | | Niger | 278 | | | Rwanda | 114 | 12 | | Senegal | 335 | 141 | | Sierra Leone | 749 | 6 | | South Africa | 2 240 | | | South Sudan | 2 147 | 25 | | São Tomé and
Príncipe | 12 | 2 | | Sudan | 2 272 | | | Swaziland | 15 | | | Tanzania | 3 163 | 522 | | Тодо | 50 | 2 | | Tunisia | 19 | 10 | | Uganda | 1 928 | 154 | | | Reservoir | Run-of-
river | |--------|-----------|------------------| | Zambia | 1 410 | 1 750 | | | Reservoir | Run-of-
river | |----------|-----------|------------------| | Zimbabwe | | 1 100 | # f) Thermal potential (MW) The thermal potential of different countries is established using Construction Intelligence Center (2017), Eastern Africa Power Pool Master Plan (2014), West and South African Power Pools: Planning and Prospects for Renewable Energy by IRENA (2013) and other country-specific sources. # Annex table W Thermal potential of different countries | | Methane | Heat | Natural gas | Coal | Biomass | |------------------------------|---------|-------|-------------|--------|---------| | Algeria | | | | | 150 | | Angola | | | 2 000 | | 27 | | Benin | | | 760 | 200 | 42 | | Botswana | | | | 2 695 | 15 | | Burkina Faso | | | | | 109 | | Burundi | | | | | 11 | | Cameroon | | | 729 | | 63 | | Cape Verde | | | | | | | Chad | | | | | 45 | | Comoros | | 40 | | | | | Djibouti | | 50 | | | | | Democratic Republic of Congo | 100 | | | 500 | 54 | | Egypt | | | | 14 000 | 799 | | Equatorial Guinea | | | 100 | | | | Ethiopia | | 4 995 | | | 594 | | Gambia | | | | | | | Ghana | | | 2 317 | 2 400 | 73 | | Guinea | | | | 340 | 43 | | Guinea Bissau | | | | | | | | Methane | Heat | Natural gas | Coal | Biomass | |-----------------------|---------|-------|-------------|--------|---------| | Ivory Coast | | | 2 592 | 700 | 83 | | Kenya | | 8 799 | 358 | 960 | 102 | | Liberia | | | | 350 | | | Libya | | | |
230 | | | Madagascar | | | | 100 | 127 | | Malawi | | | | 220 | 69 | | Mali | | | | | 107 | | Mauritania | | | 350 | | | | Mauritius | | | | | 60 | | Morocco | | | 2 400 | 1 320 | 323 | | Mozambique | | | 4 000 | 5 470 | 75 | | Namibia | | | 885 | 300 | 60 | | Niger | | | | | 100 | | Nigeria | | | | 7 980 | 854 | | Rwanda | 206 | 310 | | 100 | 92 | | São Tomé and Príncipe | | | | | | | Senegal | | | 433 | 960 | 41 | | Seychelles | | | | | | | Sierra Leone | | | | | 12 | | South Africa | | | 2 000 | 11 980 | 463 | | South Sudan | | | | | 100 | | Sudan | | | 900 | 534 | 37 | | Swaziland | | | | 1 000 | | | Tanzania | | 200 | 3 945 | 1 670 | 188 | | Togo | | | | | 30 | | Tunisia | | | 1 750 | | 81 | | Uganda | | 296 | 50 | | 98 | | Zambia | | | | 600 | 51 | | | Methane | Heat | Natural gas | Coal | Biomass | |----------|---------|------|-------------|-------|---------| | Zimbabwe | | | | 5 500 | 31 | # g) Full load hours Annex table X Full load hours applied for hydro, solar and wind power plants (existing and new)³¹ | | Hydro reservoir | | Hydro run-of-the-river | | Solar | Wind | |--------------------------|-----------------|-------|------------------------|-------|-------------------|-------------------| | | Existing | New | Existing | New | Existing
& new | Existing
& new | | Algeria | 1 455 | 1 455 | 2 064 | 2 064 | 2 010 | 3 500 | | Angola | 5 448 | 5 448 | 5 448 | 5 448 | 1 900 | 2 500 | | Benin | 0 | 3 063 | 0 | 0 | 1 600 | 2 500 | | Botswana | 0 | 0 | 0 | 0 | 1 950 | 3 000 | | Burkina Faso | 4 335 | 2 500 | 2 389 | 2 389 | 1 700 | 2 500 | | Burundi | 4 802 | 4 879 | 5 515 | 4 422 | 1 600 | 2 500 | | Cameroon | 4 740 | 4 896 | 0 | 6 030 | 1 675 | 2 500 | | Cape Verde | 0 | 0 | 0 | 0 | 1 710 | 3 000 | | Central African Republic | 6 414 | 6 414 | 0 | 6 414 | 1 710 | 2 500 | | Chad | 0 | 0 | 0 | 0 | 2 060 | 3 500 | | Comoros | 0 | 0 | 0 | 0 | 1 650 | 3 000 | | Congo | 5 725 | 5 725 | 5 725 | 5 725 | 1 470 | 2 500 | | Côte d'Ivoire | 4 143 | 4 964 | 3 800 | 4 216 | 1 600 | 2 500 | | Djibouti | 0 | 0 | 0 | 0 | 1 810 | 3 500 | | DRC East | 5 410 | 4 892 | 5 585 | 5 545 | 1 570 | 2 250 | | DRC South | 5 286 | 0 | 3 327 | 6 185 | 1 760 | 2 250 | | DRC West | 3 686 | 0 | 6 240 | 6 841 | 1 500 | 2 250 | | Egypt | 4 869 | 4 869 | 0 | 0 | 2 080 | 3 500 | | Equatorial Guinea | 4 347 | 4 347 | 4 347 | 4 347 | 1 370 | 2 500 | | Eritrea | 0 | 0 | 0 | 0 | 1 920 | 3 000 | ³¹ Based on Eastern Africa Power Pool Master Plan (2014), West and South African Power Pools: Planning and Prospects for Renewable Energy by IRENA (2013), global solar and wind atlases from the World Bank. $% \label{eq:continuous} % \label{eq:continuous}$ | | Hydro reservoir | | Hydro run- | of-the-river | Solar | Wind | |---------------------|-----------------|-------|------------|--------------|-------------------|-------------------| | | Existing | New | Existing | New | Existing
& new | Existing
& new | | Ethiopia | 2 984 | 4 759 | 4 262 | 5 002 | 1 940 | 3 000 | | Gabon | 4 834 | 4 834 | 4 834 | 4 834 | 1 340 | 2 500 | | Gambia | 0 | 3 528 | 0 | 3 629 | 1 660 | 2 500 | | Ghana | 4 128 | 4 283 | 6 111 | 6 111 | 1 570 | 2 500 | | Guinea | 3 788 | 4 272 | 4 059 | 6 582 | 1 650 | 2 500 | | Guinea-Bissau | 0 | 3 540 | 0 | 3 563 | 1 610 | 2 500 | | Kenya | 4 808 | 2 615 | 6 023 | 5 075 | 1 820 | 3 000 | | Lesotho | 5 750 | 5 750 | 4 000 | 4 000 | 1 890 | 3 000 | | Liberia | 0 | 5 500 | 4 872 | 4 872 | 1 460 | 2 500 | | Libya | 0 | 0 | 0 | 0 | 2 030 | 3 500 | | Madagascar | 2 500 | 2 500 | 5 746 | 5 746 | 1 880 | 3 000 | | Malawi | 5 539 | 5 539 | 2 250 | 5 539 | 1 780 | 3 000 | | Mali | 4 317 | 3 583 | 5 997 | 5 151 | 1 820 | 3 000 | | Mauritania | 4 031 | 4 031 | 0 | 0 | 1 860 | 3 500 | | Mauritius | 1 170 | 1 292 | 2 787 | 3 400 | 1 700 | 3 000 | | Morocco | 1 506 | 1 772 | 1 136 | 1 141 | 1 970 | 3 500 | | Mozambique | 6 024 | 6 024 | 6 468 | 6 468 | 1 690 | 3 000 | | Namibia | 5 813 | 5 813 | 0 | 5 813 | 2 050 | 3 000 | | Niger | 0 | 4 565 | 0 | 0 | 1 990 | 3 000 | | Nigeria | 4 720 | 4 720 | 0 | 4 720 | 1 740 | 2 750 | | Rwanda | 5 293 | 4 756 | 6 786 | 6 786 | 1 500 | 2 500 | | São Tomé & Príncipe | 0 | 4 136 | 4 136 | 4 136 | 1 410 | 2 500 | | Senegal | 4 028 | 3 672 | 5 833 | 3 604 | 1 710 | 2 500 | | Seychelles | 0 | 0 | 0 | 0 | 1 560 | 3 000 | | Sierra Leone | 5 800 | 5 524 | 5 133 | 5 133 | 1 560 | 2 500 | | Somalia | 0 | 0 | 0 | 0 | 1 940 | 3 500 | | South Africa | 3 035 | 3 035 | 3 035 | 3 035 | 2 020 | 3 000 | | | Hydro reservoir | | Hydro run- | of-the-river | Solar | Wind | |-------------|-----------------|-------|------------|--------------|-------------------|-------------------| | | Existing | New | Existing | New | Existing
& new | Existing
& new | | South Sudan | 0 | 4 484 | 0 | 4 489 | 1 700 | 2 500 | | Sudan | 4 403 | 4 321 | 0 | 0 | 2 010 | 3 000 | | Swaziland | 3 258 | 2 976 | 0 | 0 | 1 630 | 3 000 | | Tanzania | 4 851 | 4 282 | 4 925 | 4 925 | 1 880 | 3 000 | | Togo | 2 657 | 2 960 | 3 194 | 3 194 | 1 560 | 2 500 | | Tunisia | 1 109 | 1 109 | 1 176 | 1 176 | 1 830 | 3 500 | | Uganda | 5 266 | 5 967 | 5 019 | 5 882 | 1 750 | 2 500 | | Zambia | 5 714 | 5 714 | 5 962 | 5 962 | 1 800 | 2 500 | | Zimbabwe | 5 333 | 5 333 | 0 | 5 333 | 1 860 | 2 500 | # h) Climate gas emissions The technology specific climate gas emissions assumed in the modelling are presented in the table below. Annex table Y Applied climate gas emissions for different generation technologies 32 | | Kilo of CO₂-equivalent per Giga Joule | |-------------|---------------------------------------| | Coal | 95 | | Fuel oil | 78 | | Diesel | 74 | | Natural gas | 57 | | Methane | 49 | | Biomass | 0 | | Nuclear | 0 | ³² Based on Eastern Africa Power Pool Master Plan (2014), West and South African Power Pools: Planning and Prospects for Renewable Energy by IRENA (2013), global solar and wind atlases from the World Bank. #### i) Scenarios modelled in the study As depicted in the figure below, six scenarios in total are modelled in this study. Four of the scenarios are deemed to be the most representative when analysing effect of trade stagnation, the low carbon development and the business-as-usual path. For that reason, scenarios number 1-3, and 5 are outlined and discussed in detail in the report. Annex figure G Scenarios analysed in the study